File size: 7,425 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import ConvModule, build_norm_layer
from mmengine.model import BaseModule

from mmseg.models.utils import DAPPM, BasicBlock, Bottleneck, resize
from mmseg.registry import MODELS
from mmseg.utils import OptConfigType


@MODELS.register_module()
class DDRNet(BaseModule):
    """DDRNet backbone.

    This backbone is the implementation of `Deep Dual-resolution Networks for
    Real-time and Accurate Semantic Segmentation of Road Scenes
    <http://arxiv.org/abs/2101.06085>`_.
    Modified from https://github.com/ydhongHIT/DDRNet.

    Args:
        in_channels (int): Number of input image channels. Default: 3.
        channels: (int): The base channels of DDRNet. Default: 32.
        ppm_channels (int): The channels of PPM module. Default: 128.
        align_corners (bool): align_corners argument of F.interpolate.
            Default: False.
        norm_cfg (dict): Config dict to build norm layer.
            Default: dict(type='BN', requires_grad=True).
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='ReLU', inplace=True).
        init_cfg (dict, optional): Initialization config dict.
            Default: None.
    """

    def __init__(self,
                 in_channels: int = 3,
                 channels: int = 32,
                 ppm_channels: int = 128,
                 align_corners: bool = False,
                 norm_cfg: OptConfigType = dict(type='BN', requires_grad=True),
                 act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
                 init_cfg: OptConfigType = None):
        super().__init__(init_cfg)

        self.in_channels = in_channels
        self.ppm_channels = ppm_channels

        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.align_corners = align_corners

        # stage 0-2
        self.stem = self._make_stem_layer(in_channels, channels, num_blocks=2)
        self.relu = nn.ReLU()

        # low resolution(context) branch
        self.context_branch_layers = nn.ModuleList()
        for i in range(3):
            self.context_branch_layers.append(
                self._make_layer(
                    block=BasicBlock if i < 2 else Bottleneck,
                    inplanes=channels * 2**(i + 1),
                    planes=channels * 8 if i > 0 else channels * 4,
                    num_blocks=2 if i < 2 else 1,
                    stride=2))

        # bilateral fusion
        self.compression_1 = ConvModule(
            channels * 4,
            channels * 2,
            kernel_size=1,
            norm_cfg=self.norm_cfg,
            act_cfg=None)
        self.down_1 = ConvModule(
            channels * 2,
            channels * 4,
            kernel_size=3,
            stride=2,
            padding=1,
            norm_cfg=self.norm_cfg,
            act_cfg=None)

        self.compression_2 = ConvModule(
            channels * 8,
            channels * 2,
            kernel_size=1,
            norm_cfg=self.norm_cfg,
            act_cfg=None)
        self.down_2 = nn.Sequential(
            ConvModule(
                channels * 2,
                channels * 4,
                kernel_size=3,
                stride=2,
                padding=1,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg),
            ConvModule(
                channels * 4,
                channels * 8,
                kernel_size=3,
                stride=2,
                padding=1,
                norm_cfg=self.norm_cfg,
                act_cfg=None))

        # high resolution(spatial) branch
        self.spatial_branch_layers = nn.ModuleList()
        for i in range(3):
            self.spatial_branch_layers.append(
                self._make_layer(
                    block=BasicBlock if i < 2 else Bottleneck,
                    inplanes=channels * 2,
                    planes=channels * 2,
                    num_blocks=2 if i < 2 else 1,
                ))

        self.spp = DAPPM(
            channels * 16, ppm_channels, channels * 4, num_scales=5)

    def _make_stem_layer(self, in_channels, channels, num_blocks):
        layers = [
            ConvModule(
                in_channels,
                channels,
                kernel_size=3,
                stride=2,
                padding=1,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg),
            ConvModule(
                channels,
                channels,
                kernel_size=3,
                stride=2,
                padding=1,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg)
        ]

        layers.extend([
            self._make_layer(BasicBlock, channels, channels, num_blocks),
            nn.ReLU(),
            self._make_layer(
                BasicBlock, channels, channels * 2, num_blocks, stride=2),
            nn.ReLU(),
        ])

        return nn.Sequential(*layers)

    def _make_layer(self, block, inplanes, planes, num_blocks, stride=1):
        downsample = None
        if stride != 1 or inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(
                    inplanes,
                    planes * block.expansion,
                    kernel_size=1,
                    stride=stride,
                    bias=False),
                build_norm_layer(self.norm_cfg, planes * block.expansion)[1])

        layers = [
            block(
                in_channels=inplanes,
                channels=planes,
                stride=stride,
                downsample=downsample)
        ]
        inplanes = planes * block.expansion
        for i in range(1, num_blocks):
            layers.append(
                block(
                    in_channels=inplanes,
                    channels=planes,
                    stride=1,
                    norm_cfg=self.norm_cfg,
                    act_cfg_out=None if i == num_blocks - 1 else self.act_cfg))

        return nn.Sequential(*layers)

    def forward(self, x):
        """Forward function."""
        out_size = (x.shape[-2] // 8, x.shape[-1] // 8)

        # stage 0-2
        x = self.stem(x)

        # stage3
        x_c = self.context_branch_layers[0](x)
        x_s = self.spatial_branch_layers[0](x)
        comp_c = self.compression_1(self.relu(x_c))
        x_c += self.down_1(self.relu(x_s))
        x_s += resize(
            comp_c,
            size=out_size,
            mode='bilinear',
            align_corners=self.align_corners)
        if self.training:
            temp_context = x_s.clone()

        # stage4
        x_c = self.context_branch_layers[1](self.relu(x_c))
        x_s = self.spatial_branch_layers[1](self.relu(x_s))
        comp_c = self.compression_2(self.relu(x_c))
        x_c += self.down_2(self.relu(x_s))
        x_s += resize(
            comp_c,
            size=out_size,
            mode='bilinear',
            align_corners=self.align_corners)

        # stage5
        x_s = self.spatial_branch_layers[2](self.relu(x_s))
        x_c = self.context_branch_layers[2](self.relu(x_c))
        x_c = self.spp(x_c)
        x_c = resize(
            x_c,
            size=out_size,
            mode='bilinear',
            align_corners=self.align_corners)

        return (temp_context, x_s + x_c) if self.training else x_s + x_c