File size: 13,334 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Dict, List, Optional, Sequence, Union

import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.model import BaseModule

from mmpretrain.models import VisionTransformer
from mmpretrain.registry import MODELS
from mmpretrain.structures import DataSample
from .base import BaseSelfSupervisor


@MODELS.register_module()
class HOGGenerator(BaseModule):
    """Generate HOG feature for images.

    This module is used in MaskFeat to generate HOG feature. The code is
    modified from file `slowfast/models/operators.py
    <https://github.com/facebookresearch/SlowFast/blob/main/slowfast/models/operators.py>`_.
    Here is the link of `HOG wikipedia
    <https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients>`_.

    Args:
        nbins (int): Number of bin. Defaults to 9.
        pool (float): Number of cell. Defaults to 8.
        gaussian_window (int): Size of gaussian kernel. Defaults to 16.
    """

    def __init__(self,
                 nbins: int = 9,
                 pool: int = 8,
                 gaussian_window: int = 16) -> None:
        super().__init__()
        self.nbins = nbins
        self.pool = pool
        self.pi = math.pi
        weight_x = torch.FloatTensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]])
        weight_x = weight_x.view(1, 1, 3, 3).repeat(3, 1, 1, 1).contiguous()
        weight_y = weight_x.transpose(2, 3).contiguous()
        self.register_buffer('weight_x', weight_x)
        self.register_buffer('weight_y', weight_y)

        self.gaussian_window = gaussian_window
        if gaussian_window:
            gaussian_kernel = self.get_gaussian_kernel(gaussian_window,
                                                       gaussian_window // 2)
            self.register_buffer('gaussian_kernel', gaussian_kernel)

    def get_gaussian_kernel(self, kernlen: int, std: int) -> torch.Tensor:
        """Returns a 2D Gaussian kernel array."""

        def _gaussian_fn(kernlen: int, std: int) -> torch.Tensor:
            n = torch.arange(0, kernlen).float()
            n -= n.mean()
            n /= std
            w = torch.exp(-0.5 * n**2)
            return w

        kernel_1d = _gaussian_fn(kernlen, std)
        kernel_2d = kernel_1d[:, None] * kernel_1d[None, :]
        return kernel_2d / kernel_2d.sum()

    def _reshape(self, hog_feat: torch.Tensor) -> torch.Tensor:
        """Reshape HOG Features for output."""
        hog_feat = hog_feat.flatten(1, 2)
        self.unfold_size = hog_feat.shape[-1] // 14
        hog_feat = hog_feat.permute(0, 2, 3, 1)
        hog_feat = hog_feat.unfold(1, self.unfold_size,
                                   self.unfold_size).unfold(
                                       2, self.unfold_size, self.unfold_size)
        hog_feat = hog_feat.flatten(1, 2).flatten(2)
        return hog_feat

    @torch.no_grad()
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Generate hog feature for each batch images.

        Args:
            x (torch.Tensor): Input images of shape (N, 3, H, W).

        Returns:
            torch.Tensor: Hog features.
        """
        # input is RGB image with shape [B 3 H W]
        self.h, self.w = x.size(-2), x.size(-1)
        x = F.pad(x, pad=(1, 1, 1, 1), mode='reflect')
        gx_rgb = F.conv2d(
            x, self.weight_x, bias=None, stride=1, padding=0, groups=3)
        gy_rgb = F.conv2d(
            x, self.weight_y, bias=None, stride=1, padding=0, groups=3)
        norm_rgb = torch.stack([gx_rgb, gy_rgb], dim=-1).norm(dim=-1)
        phase = torch.atan2(gx_rgb, gy_rgb)
        phase = phase / self.pi * self.nbins  # [-9, 9]

        b, c, h, w = norm_rgb.shape
        out = torch.zeros((b, c, self.nbins, h, w),
                          dtype=torch.float,
                          device=x.device)
        phase = phase.view(b, c, 1, h, w)
        norm_rgb = norm_rgb.view(b, c, 1, h, w)
        if self.gaussian_window:
            if h != self.gaussian_window:
                assert h % self.gaussian_window == 0, 'h {} gw {}'.format(
                    h, self.gaussian_window)
                repeat_rate = h // self.gaussian_window
                temp_gaussian_kernel = self.gaussian_kernel.repeat(
                    [repeat_rate, repeat_rate])
            else:
                temp_gaussian_kernel = self.gaussian_kernel
            norm_rgb *= temp_gaussian_kernel

        out.scatter_add_(2, phase.floor().long() % self.nbins, norm_rgb)

        out = out.unfold(3, self.pool, self.pool)
        out = out.unfold(4, self.pool, self.pool)
        out = out.sum(dim=[-1, -2])

        self.out = F.normalize(out, p=2, dim=2)

        return self._reshape(self.out)

    def generate_hog_image(self, hog_out: torch.Tensor) -> np.ndarray:
        """Generate HOG image according to HOG features."""
        assert hog_out.size(0) == 1 and hog_out.size(1) == 3, \
            'Check the input batch size and the channcel number, only support'\
            '"batch_size = 1".'
        hog_image = np.zeros([self.h, self.w])
        cell_gradient = np.array(hog_out.mean(dim=1).squeeze().detach().cpu())
        cell_width = self.pool / 2
        max_mag = np.array(cell_gradient).max()
        angle_gap = 360 / self.nbins

        for x in range(cell_gradient.shape[1]):
            for y in range(cell_gradient.shape[2]):
                cell_grad = cell_gradient[:, x, y]
                cell_grad /= max_mag
                angle = 0
                for magnitude in cell_grad:
                    angle_radian = math.radians(angle)
                    x1 = int(x * self.pool +
                             magnitude * cell_width * math.cos(angle_radian))
                    y1 = int(y * self.pool +
                             magnitude * cell_width * math.sin(angle_radian))
                    x2 = int(x * self.pool -
                             magnitude * cell_width * math.cos(angle_radian))
                    y2 = int(y * self.pool -
                             magnitude * cell_width * math.sin(angle_radian))
                    magnitude = 0 if magnitude < 0 else magnitude
                    cv2.line(hog_image, (y1, x1), (y2, x2),
                             int(255 * math.sqrt(magnitude)))
                    angle += angle_gap
        return hog_image


@MODELS.register_module()
class MaskFeatViT(VisionTransformer):
    """Vision Transformer for MaskFeat pre-training.

    A PyTorch implement of: `Masked Feature Prediction for Self-Supervised
    Visual Pre-Training <https://arxiv.org/abs/2112.09133>`_.

    Args:
        arch (str | dict): Vision Transformer architecture
            Default: 'b'
        img_size (int | tuple): Input image size
        patch_size (int | tuple): The patch size
        out_indices (Sequence | int): Output from which stages.
            Defaults to -1, means the last stage.
        drop_rate (float): Probability of an element to be zeroed.
            Defaults to 0.
        drop_path_rate (float): stochastic depth rate. Defaults to 0.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to ``dict(type='LN')``.
        final_norm (bool): Whether to add a additional layer to normalize
            final feature map. Defaults to True.
        out_type (str): The type of output features. Please choose from

            - ``"cls_token"``: The class token tensor with shape (B, C).
            - ``"featmap"``: The feature map tensor from the patch tokens
              with shape (B, C, H, W).
            - ``"avg_featmap"``: The global averaged feature map tensor
              with shape (B, C).
            - ``"raw"``: The raw feature tensor includes patch tokens and
              class tokens with shape (B, L, C).

            It only works without input mask. Defaults to ``"avg_featmap"``.
        interpolate_mode (str): Select the interpolate mode for position
            embeding vector resize. Defaults to "bicubic".
        patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict.
        layer_cfgs (Sequence | dict): Configs of each transformer layer in
            encoder. Defaults to an empty dict.
        init_cfg (dict, optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 arch: Union[str, dict] = 'b',
                 img_size: int = 224,
                 patch_size: int = 16,
                 out_indices: Union[Sequence, int] = -1,
                 drop_rate: float = 0,
                 drop_path_rate: float = 0,
                 norm_cfg: dict = dict(type='LN', eps=1e-6),
                 final_norm: bool = True,
                 out_type: str = 'raw',
                 interpolate_mode: str = 'bicubic',
                 patch_cfg: dict = dict(),
                 layer_cfgs: dict = dict(),
                 init_cfg: Optional[Union[List[dict], dict]] = None) -> None:
        super().__init__(
            arch=arch,
            img_size=img_size,
            patch_size=patch_size,
            out_indices=out_indices,
            drop_rate=drop_rate,
            drop_path_rate=drop_path_rate,
            norm_cfg=norm_cfg,
            final_norm=final_norm,
            out_type=out_type,
            with_cls_token=True,
            interpolate_mode=interpolate_mode,
            patch_cfg=patch_cfg,
            layer_cfgs=layer_cfgs,
            init_cfg=init_cfg)

        self.mask_token = nn.parameter.Parameter(
            torch.zeros(1, 1, self.embed_dims), requires_grad=True)
        self.num_patches = self.patch_resolution[0] * self.patch_resolution[1]

    def init_weights(self) -> None:
        """Initialize position embedding, mask token and cls token."""
        super().init_weights()
        if not (isinstance(self.init_cfg, dict)
                and self.init_cfg['type'] == 'Pretrained'):

            nn.init.trunc_normal_(self.cls_token, std=.02)
            nn.init.trunc_normal_(self.mask_token, std=.02)
            nn.init.trunc_normal_(self.pos_embed, std=.02)

            self.apply(self._init_weights)

    def _init_weights(self, m: torch.nn.Module) -> None:
        if isinstance(m, (nn.Linear, nn.Conv2d, nn.Conv3d)):
            nn.init.trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x: torch.Tensor,
                mask: Optional[torch.Tensor]) -> torch.Tensor:
        """Generate features for masked images.

        The function supports two kind of forward behaviors. If the ``mask`` is
        not ``None``, the forward function will be executed as masked image
        modeling pre-training; if the ``mask`` is ``None``, the forward
        function will call ``super().forward()``, which extract features from
        images without mask.

        Args:
            x (torch.Tensor): Input images.
            mask (torch.Tensor, optional): Input masks.

        Returns:
            torch.Tensor: Features with cls_tokens.
        """
        if mask is None:
            return super().forward(x)

        else:
            B = x.shape[0]
            x = self.patch_embed(x)[0]

            # masking: length -> length * mask_ratio
            B, L, _ = x.shape
            mask_tokens = self.mask_token.expand(B, L, -1)
            mask = mask.unsqueeze(-1)
            x = x * (1 - mask.int()) + mask_tokens * mask

            # append cls token
            cls_tokens = self.cls_token.expand(B, -1, -1)
            x = torch.cat((cls_tokens, x), dim=1)
            x = x + self.pos_embed
            x = self.drop_after_pos(x)

            for i, layer in enumerate(self.layers):
                x = layer(x)

                if i == len(self.layers) - 1 and self.final_norm:
                    x = self.norm1(x)

            return x


@MODELS.register_module()
class MaskFeat(BaseSelfSupervisor):
    """MaskFeat.

    Implementation of `Masked Feature Prediction for Self-Supervised Visual
    Pre-Training <https://arxiv.org/abs/2112.09133>`_.
    """

    def extract_feat(self, inputs: torch.Tensor):
        return self.backbone(inputs, mask=None)

    def loss(self, inputs: torch.Tensor, data_samples: List[DataSample],
             **kwargs) -> Dict[str, torch.Tensor]:
        """The forward function in training.

        Args:
            inputs (torch.Tensor): The input images.
            data_samples (List[DataSample]): All elements required
                during the forward function.

        Returns:
            Dict[str, torch.Tensor]: A dictionary of loss components.
        """
        mask = torch.stack([data_sample.mask for data_sample in data_samples])
        mask = mask.flatten(1).bool()

        latent = self.backbone(inputs, mask)
        B, L, C = latent.shape
        pred = self.neck((latent.view(B * L, C), ))
        pred = pred[0].view(B, L, -1)
        hog = self.target_generator(inputs)

        # remove cls_token before compute loss
        loss = self.head.loss(pred[:, 1:], hog, mask)
        losses = dict(loss=loss)
        return losses