Spaces:
Runtime error
Runtime error
File size: 13,334 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Dict, List, Optional, Sequence, Union
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.model import BaseModule
from mmpretrain.models import VisionTransformer
from mmpretrain.registry import MODELS
from mmpretrain.structures import DataSample
from .base import BaseSelfSupervisor
@MODELS.register_module()
class HOGGenerator(BaseModule):
"""Generate HOG feature for images.
This module is used in MaskFeat to generate HOG feature. The code is
modified from file `slowfast/models/operators.py
<https://github.com/facebookresearch/SlowFast/blob/main/slowfast/models/operators.py>`_.
Here is the link of `HOG wikipedia
<https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients>`_.
Args:
nbins (int): Number of bin. Defaults to 9.
pool (float): Number of cell. Defaults to 8.
gaussian_window (int): Size of gaussian kernel. Defaults to 16.
"""
def __init__(self,
nbins: int = 9,
pool: int = 8,
gaussian_window: int = 16) -> None:
super().__init__()
self.nbins = nbins
self.pool = pool
self.pi = math.pi
weight_x = torch.FloatTensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]])
weight_x = weight_x.view(1, 1, 3, 3).repeat(3, 1, 1, 1).contiguous()
weight_y = weight_x.transpose(2, 3).contiguous()
self.register_buffer('weight_x', weight_x)
self.register_buffer('weight_y', weight_y)
self.gaussian_window = gaussian_window
if gaussian_window:
gaussian_kernel = self.get_gaussian_kernel(gaussian_window,
gaussian_window // 2)
self.register_buffer('gaussian_kernel', gaussian_kernel)
def get_gaussian_kernel(self, kernlen: int, std: int) -> torch.Tensor:
"""Returns a 2D Gaussian kernel array."""
def _gaussian_fn(kernlen: int, std: int) -> torch.Tensor:
n = torch.arange(0, kernlen).float()
n -= n.mean()
n /= std
w = torch.exp(-0.5 * n**2)
return w
kernel_1d = _gaussian_fn(kernlen, std)
kernel_2d = kernel_1d[:, None] * kernel_1d[None, :]
return kernel_2d / kernel_2d.sum()
def _reshape(self, hog_feat: torch.Tensor) -> torch.Tensor:
"""Reshape HOG Features for output."""
hog_feat = hog_feat.flatten(1, 2)
self.unfold_size = hog_feat.shape[-1] // 14
hog_feat = hog_feat.permute(0, 2, 3, 1)
hog_feat = hog_feat.unfold(1, self.unfold_size,
self.unfold_size).unfold(
2, self.unfold_size, self.unfold_size)
hog_feat = hog_feat.flatten(1, 2).flatten(2)
return hog_feat
@torch.no_grad()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Generate hog feature for each batch images.
Args:
x (torch.Tensor): Input images of shape (N, 3, H, W).
Returns:
torch.Tensor: Hog features.
"""
# input is RGB image with shape [B 3 H W]
self.h, self.w = x.size(-2), x.size(-1)
x = F.pad(x, pad=(1, 1, 1, 1), mode='reflect')
gx_rgb = F.conv2d(
x, self.weight_x, bias=None, stride=1, padding=0, groups=3)
gy_rgb = F.conv2d(
x, self.weight_y, bias=None, stride=1, padding=0, groups=3)
norm_rgb = torch.stack([gx_rgb, gy_rgb], dim=-1).norm(dim=-1)
phase = torch.atan2(gx_rgb, gy_rgb)
phase = phase / self.pi * self.nbins # [-9, 9]
b, c, h, w = norm_rgb.shape
out = torch.zeros((b, c, self.nbins, h, w),
dtype=torch.float,
device=x.device)
phase = phase.view(b, c, 1, h, w)
norm_rgb = norm_rgb.view(b, c, 1, h, w)
if self.gaussian_window:
if h != self.gaussian_window:
assert h % self.gaussian_window == 0, 'h {} gw {}'.format(
h, self.gaussian_window)
repeat_rate = h // self.gaussian_window
temp_gaussian_kernel = self.gaussian_kernel.repeat(
[repeat_rate, repeat_rate])
else:
temp_gaussian_kernel = self.gaussian_kernel
norm_rgb *= temp_gaussian_kernel
out.scatter_add_(2, phase.floor().long() % self.nbins, norm_rgb)
out = out.unfold(3, self.pool, self.pool)
out = out.unfold(4, self.pool, self.pool)
out = out.sum(dim=[-1, -2])
self.out = F.normalize(out, p=2, dim=2)
return self._reshape(self.out)
def generate_hog_image(self, hog_out: torch.Tensor) -> np.ndarray:
"""Generate HOG image according to HOG features."""
assert hog_out.size(0) == 1 and hog_out.size(1) == 3, \
'Check the input batch size and the channcel number, only support'\
'"batch_size = 1".'
hog_image = np.zeros([self.h, self.w])
cell_gradient = np.array(hog_out.mean(dim=1).squeeze().detach().cpu())
cell_width = self.pool / 2
max_mag = np.array(cell_gradient).max()
angle_gap = 360 / self.nbins
for x in range(cell_gradient.shape[1]):
for y in range(cell_gradient.shape[2]):
cell_grad = cell_gradient[:, x, y]
cell_grad /= max_mag
angle = 0
for magnitude in cell_grad:
angle_radian = math.radians(angle)
x1 = int(x * self.pool +
magnitude * cell_width * math.cos(angle_radian))
y1 = int(y * self.pool +
magnitude * cell_width * math.sin(angle_radian))
x2 = int(x * self.pool -
magnitude * cell_width * math.cos(angle_radian))
y2 = int(y * self.pool -
magnitude * cell_width * math.sin(angle_radian))
magnitude = 0 if magnitude < 0 else magnitude
cv2.line(hog_image, (y1, x1), (y2, x2),
int(255 * math.sqrt(magnitude)))
angle += angle_gap
return hog_image
@MODELS.register_module()
class MaskFeatViT(VisionTransformer):
"""Vision Transformer for MaskFeat pre-training.
A PyTorch implement of: `Masked Feature Prediction for Self-Supervised
Visual Pre-Training <https://arxiv.org/abs/2112.09133>`_.
Args:
arch (str | dict): Vision Transformer architecture
Default: 'b'
img_size (int | tuple): Input image size
patch_size (int | tuple): The patch size
out_indices (Sequence | int): Output from which stages.
Defaults to -1, means the last stage.
drop_rate (float): Probability of an element to be zeroed.
Defaults to 0.
drop_path_rate (float): stochastic depth rate. Defaults to 0.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
final_norm (bool): Whether to add a additional layer to normalize
final feature map. Defaults to True.
out_type (str): The type of output features. Please choose from
- ``"cls_token"``: The class token tensor with shape (B, C).
- ``"featmap"``: The feature map tensor from the patch tokens
with shape (B, C, H, W).
- ``"avg_featmap"``: The global averaged feature map tensor
with shape (B, C).
- ``"raw"``: The raw feature tensor includes patch tokens and
class tokens with shape (B, L, C).
It only works without input mask. Defaults to ``"avg_featmap"``.
interpolate_mode (str): Select the interpolate mode for position
embeding vector resize. Defaults to "bicubic".
patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict.
layer_cfgs (Sequence | dict): Configs of each transformer layer in
encoder. Defaults to an empty dict.
init_cfg (dict, optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
arch: Union[str, dict] = 'b',
img_size: int = 224,
patch_size: int = 16,
out_indices: Union[Sequence, int] = -1,
drop_rate: float = 0,
drop_path_rate: float = 0,
norm_cfg: dict = dict(type='LN', eps=1e-6),
final_norm: bool = True,
out_type: str = 'raw',
interpolate_mode: str = 'bicubic',
patch_cfg: dict = dict(),
layer_cfgs: dict = dict(),
init_cfg: Optional[Union[List[dict], dict]] = None) -> None:
super().__init__(
arch=arch,
img_size=img_size,
patch_size=patch_size,
out_indices=out_indices,
drop_rate=drop_rate,
drop_path_rate=drop_path_rate,
norm_cfg=norm_cfg,
final_norm=final_norm,
out_type=out_type,
with_cls_token=True,
interpolate_mode=interpolate_mode,
patch_cfg=patch_cfg,
layer_cfgs=layer_cfgs,
init_cfg=init_cfg)
self.mask_token = nn.parameter.Parameter(
torch.zeros(1, 1, self.embed_dims), requires_grad=True)
self.num_patches = self.patch_resolution[0] * self.patch_resolution[1]
def init_weights(self) -> None:
"""Initialize position embedding, mask token and cls token."""
super().init_weights()
if not (isinstance(self.init_cfg, dict)
and self.init_cfg['type'] == 'Pretrained'):
nn.init.trunc_normal_(self.cls_token, std=.02)
nn.init.trunc_normal_(self.mask_token, std=.02)
nn.init.trunc_normal_(self.pos_embed, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m: torch.nn.Module) -> None:
if isinstance(m, (nn.Linear, nn.Conv2d, nn.Conv3d)):
nn.init.trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x: torch.Tensor,
mask: Optional[torch.Tensor]) -> torch.Tensor:
"""Generate features for masked images.
The function supports two kind of forward behaviors. If the ``mask`` is
not ``None``, the forward function will be executed as masked image
modeling pre-training; if the ``mask`` is ``None``, the forward
function will call ``super().forward()``, which extract features from
images without mask.
Args:
x (torch.Tensor): Input images.
mask (torch.Tensor, optional): Input masks.
Returns:
torch.Tensor: Features with cls_tokens.
"""
if mask is None:
return super().forward(x)
else:
B = x.shape[0]
x = self.patch_embed(x)[0]
# masking: length -> length * mask_ratio
B, L, _ = x.shape
mask_tokens = self.mask_token.expand(B, L, -1)
mask = mask.unsqueeze(-1)
x = x * (1 - mask.int()) + mask_tokens * mask
# append cls token
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.drop_after_pos(x)
for i, layer in enumerate(self.layers):
x = layer(x)
if i == len(self.layers) - 1 and self.final_norm:
x = self.norm1(x)
return x
@MODELS.register_module()
class MaskFeat(BaseSelfSupervisor):
"""MaskFeat.
Implementation of `Masked Feature Prediction for Self-Supervised Visual
Pre-Training <https://arxiv.org/abs/2112.09133>`_.
"""
def extract_feat(self, inputs: torch.Tensor):
return self.backbone(inputs, mask=None)
def loss(self, inputs: torch.Tensor, data_samples: List[DataSample],
**kwargs) -> Dict[str, torch.Tensor]:
"""The forward function in training.
Args:
inputs (torch.Tensor): The input images.
data_samples (List[DataSample]): All elements required
during the forward function.
Returns:
Dict[str, torch.Tensor]: A dictionary of loss components.
"""
mask = torch.stack([data_sample.mask for data_sample in data_samples])
mask = mask.flatten(1).bool()
latent = self.backbone(inputs, mask)
B, L, C = latent.shape
pred = self.neck((latent.view(B * L, C), ))
pred = pred[0].view(B, L, -1)
hog = self.target_generator(inputs)
# remove cls_token before compute loss
loss = self.head.loss(pred[:, 1:], hog, mask)
losses = dict(loss=loss)
return losses
|