File size: 23,773 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
# Copyright (c) OpenMMLab. All rights reserved.
from copy import deepcopy
from pathlib import Path
from typing import Callable, List, Optional, Tuple, Union

import mmengine
import numpy as np
import torch
from mmcv.image import imread
from mmengine.config import Config
from mmengine.dataset import BaseDataset, Compose, default_collate

from mmpretrain.registry import TRANSFORMS
from mmpretrain.structures import DataSample
from mmpretrain.utils import track
from .base import BaseInferencer
from .base import InputType as ImageType
from .base import ModelType
from .model import list_models


def filter_transforms(transforms: list, data_info: dict):
    """Filter pipeline to avoid KeyError with partial data info."""
    data_info = deepcopy(data_info)
    filtered_transforms = []
    for t in transforms:
        try:
            data_info = t(data_info)
            filtered_transforms.append(t)
        except KeyError:
            pass
    return filtered_transforms


class TextToImageRetrievalInferencer(BaseInferencer):
    """The inferencer for text to image retrieval.

    Args:
        model (BaseModel | str | Config): A model name or a path to the config
            file, or a :obj:`BaseModel` object. The model name can be found
            by ``TextToImageRetrievalInferencer.list_models()`` and you can also
            query it in :doc:`/modelzoo_statistics`.
        prototype (str | list | dict | DataLoader | BaseDataset): The images to
            be retrieved. It can be the following types:

            - str: The directory of the the images.
            - list: A list of path of the images.
            - dict: A config dict of the a prototype dataset.
            - BaseDataset: A prototype dataset.
            - DataLoader: A data loader to load the prototype data.

        prototype_cache (str, optional): The path of the generated prototype
            features. If exists, directly load the cache instead of re-generate
            the prototype features. If not exists, save the generated features
            to the path. Defaults to None.
        fast_match (bool): Some algorithms will record extra image features for
            further matching, which may consume large memory, set True to avoid
            this behavior. Defaults to True.
        pretrained (str, optional): Path to the checkpoint. If None, it will
            try to find a pre-defined weight from the model you specified
            (only work if the ``model`` is a model name). Defaults to None.
        device (str, optional): Device to run inference. If None, the available
            device will be automatically used. Defaults to None.
        **kwargs: Other keyword arguments to initialize the model (only work if
            the ``model`` is a model name).

    Example:
        >>> from mmpretrain import TextToImageRetrievalInferencer
        >>> inferencer = TextToImageRetrievalInferencer(
        ...     'blip-base_3rdparty_retrieval',
        ...     prototype='./demo/',
        ...     prototype_cache='t2i_retri.pth')
        >>> inferencer('A cat and a dog.')[0]
        {'match_score': tensor(0.3855, device='cuda:0'),
         'sample_idx': 1,
         'sample': {'img_path': './demo/cat-dog.png'}}
    """  # noqa: E501

    visualize_kwargs: set = {
        'draw_score', 'show_dir', 'show', 'wait_time', 'figsize', 'topk'
    }
    postprocess_kwargs: set = {'topk'}

    def __init__(self,
                 model: ModelType,
                 prototype,
                 prototype_cache=None,
                 fast_match=True,
                 prepare_batch_size=8,
                 pretrained: Union[bool, str] = True,
                 device: Union[str, torch.device, None] = None,
                 **kwargs) -> None:
        super().__init__(
            model=model, pretrained=pretrained, device=device, **kwargs)

        self.img_pipeline, self.text_pipeline = self.pipeline

        if hasattr(self.model, 'fast_match'):
            self.model.fast_match = fast_match

        self.prototype_dataset = self._prepare_prototype(
            prototype, prototype_cache, batch_size=prepare_batch_size)

    def _prepare_prototype(self, prototype, cache=None, batch_size=8):
        from mmengine.dataset import DefaultSampler
        from torch.utils.data import DataLoader

        def build_dataloader(dataset):
            return DataLoader(
                dataset,
                batch_size=batch_size,
                collate_fn=default_collate,
                sampler=DefaultSampler(dataset, shuffle=False),
                persistent_workers=False,
            )

        if isinstance(prototype, str):
            # A directory path of images
            prototype = dict(
                type='CustomDataset', with_label=False, data_root=prototype)

        if isinstance(prototype, list):
            test_pipeline = [dict(type='LoadImageFromFile'), self.img_pipeline]
            dataset = BaseDataset(
                lazy_init=True, serialize_data=False, pipeline=test_pipeline)
            dataset.data_list = [{
                'sample_idx': i,
                'img_path': file
            } for i, file in enumerate(prototype)]
            dataset._fully_initialized = True
            dataloader = build_dataloader(dataset)
        elif isinstance(prototype, dict):
            # A config of dataset
            from mmpretrain.registry import DATASETS
            test_pipeline = [dict(type='LoadImageFromFile'), self.img_pipeline]
            prototype.setdefault('pipeline', test_pipeline)
            dataset = DATASETS.build(prototype)
            dataloader = build_dataloader(dataset)
        elif isinstance(prototype, list):
            test_pipeline = [dict(type='LoadImageFromFile'), self.img_pipeline]
            dataset = BaseDataset(
                lazy_init=True, serialize_data=False, pipeline=test_pipeline)
            dataset.data_list = [{
                'sample_idx': i,
                'img_path': file
            } for i, file in enumerate(prototype)]
            dataset._fully_initialized = True
            dataloader = build_dataloader(dataset)
        elif isinstance(prototype, DataLoader):
            dataset = prototype.dataset
            dataloader = prototype
        elif isinstance(prototype, BaseDataset):
            dataset = prototype
            dataloader = build_dataloader(dataset)
        else:
            raise TypeError(f'Unsupported prototype type {type(prototype)}.')

        if cache is not None and Path(cache).exists():
            self.prototype = torch.load(cache)
        else:
            prototype = []
            for data_batch in track(dataloader, 'Prepare prototype...'):
                with torch.no_grad():
                    data_batch = self.model.data_preprocessor(
                        data_batch, False)
                    feats = self.model._run_forward(data_batch, mode='tensor')
                    prototype.append(feats)
            prototype = {
                k: torch.cat([d[k] for d in prototype])
                for k in prototype[0]
            }
            self.prototype = prototype

        from mmengine.logging import MMLogger
        logger = MMLogger.get_current_instance()
        if cache is None:
            logger.info('The prototype has been prepared, you can use '
                        '`save_prototype` to dump it into a pickle '
                        'file for the future usage.')
        elif not Path(cache).exists():
            self.save_prototype(cache)
            logger.info(f'The prototype has been saved at {cache}.')

        return dataset

    def save_prototype(self, path):
        torch.save(self.prototype, path)

    def __call__(self,
                 inputs: ImageType,
                 return_datasamples: bool = False,
                 batch_size: int = 1,
                 **kwargs) -> dict:
        """Call the inferencer.

        Args:
            inputs (str | array | list): The image path or array, or a list of
                images.
            return_datasamples (bool): Whether to return results as
                :obj:`DataSample`. Defaults to False.
            batch_size (int): Batch size. Defaults to 1.
            resize (int, optional): Resize the long edge of the image to the
                specified length before visualization. Defaults to None.
            draw_score (bool): Whether to draw the match scores.
                Defaults to True.
            show (bool): Whether to display the visualization result in a
                window. Defaults to False.
            wait_time (float): The display time (s). Defaults to 0, which means
                "forever".
            show_dir (str, optional): If not None, save the visualization
                results in the specified directory. Defaults to None.

        Returns:
            list: The inference results.
        """
        return super().__call__(inputs, return_datasamples, batch_size,
                                **kwargs)

    @torch.no_grad()
    def forward(self, data: dict, **kwargs):
        """Feed the inputs to the model."""
        data = self.model.data_preprocessor(data, False)
        data_samples = data['data_samples']
        feats = self.prototype.copy()
        feats.update(self.model.extract_feat(data_samples=data_samples))
        return self.model.predict_all(feats, data_samples, cal_i2t=False)[0]

    def _init_pipeline(self, cfg: Config) -> Callable:
        test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline
        test_transfroms = [TRANSFORMS.build(t) for t in test_pipeline_cfg]
        img_info = {'img': np.zeros((224, 224, 3), dtype=np.uint8)}
        text_info = {'text': 'example'}
        img_pipeline = Compose(filter_transforms(test_transfroms, img_info))
        text_pipeline = Compose(filter_transforms(test_transfroms, text_info))
        return img_pipeline, text_pipeline

    def preprocess(self, inputs: List[str], batch_size: int = 1):

        def process_text(input_: str):
            return self.text_pipeline({'text': input_})

        chunked_data = self._get_chunk_data(
            map(process_text, inputs), batch_size)
        yield from map(default_collate, chunked_data)

    def visualize(self,
                  ori_inputs: List[str],
                  preds: List[DataSample],
                  topk: int = 3,
                  figsize: Tuple[int, int] = (16, 9),
                  show: bool = False,
                  wait_time: int = 0,
                  draw_score=True,
                  show_dir=None):
        if not show and show_dir is None:
            return None

        if self.visualizer is None:
            from mmpretrain.visualization import UniversalVisualizer
            self.visualizer = UniversalVisualizer()

        visualization = []
        for i, (text, data_sample) in enumerate(zip(ori_inputs, preds)):
            name = str(i)

            if show_dir is not None:
                show_dir = Path(show_dir)
                show_dir.mkdir(exist_ok=True)
                out_file = str((show_dir / name).with_suffix('.png'))
            else:
                out_file = None

            self.visualizer.visualize_t2i_retrieval(
                text,
                data_sample,
                self.prototype_dataset,
                topk=topk,
                fig_cfg=dict(figsize=figsize),
                draw_score=draw_score,
                show=show,
                wait_time=wait_time,
                name=name,
                out_file=out_file)
            visualization.append(self.visualizer.get_image())
        if show:
            self.visualizer.close()
        return visualization

    def postprocess(
        self,
        preds: List[DataSample],
        visualization: List[np.ndarray],
        return_datasamples=False,
        topk=1,
    ) -> dict:
        if return_datasamples:
            return preds

        results = []
        for data_sample in preds:
            match_scores, indices = torch.topk(data_sample.pred_score, k=topk)
            matches = []
            for match_score, sample_idx in zip(match_scores, indices):
                sample = self.prototype_dataset.get_data_info(
                    sample_idx.item())
                sample_idx = sample.pop('sample_idx')
                matches.append({
                    'match_score': match_score,
                    'sample_idx': sample_idx,
                    'sample': sample
                })
            results.append(matches)

        return results

    @staticmethod
    def list_models(pattern: Optional[str] = None):
        """List all available model names.

        Args:
            pattern (str | None): A wildcard pattern to match model names.

        Returns:
            List[str]: a list of model names.
        """
        return list_models(pattern=pattern, task='Text-To-Image Retrieval')


class ImageToTextRetrievalInferencer(BaseInferencer):
    """The inferencer for image to text retrieval.

    Args:
        model (BaseModel | str | Config): A model name or a path to the config
            file, or a :obj:`BaseModel` object. The model name can be found
            by ``ImageToTextRetrievalInferencer.list_models()`` and you can
            also query it in :doc:`/modelzoo_statistics`.
        prototype (str | list | dict | DataLoader, BaseDataset): The images to
            be retrieved. It can be the following types:

            - str: The file path to load the string list.
            - list: A list of string.

        prototype_cache (str, optional): The path of the generated prototype
            features. If exists, directly load the cache instead of re-generate
            the prototype features. If not exists, save the generated features
            to the path. Defaults to None.
        fast_match (bool): Some algorithms will record extra image features for
            further matching, which may consume large memory, set True to avoid
            this behavior. Defaults to True.
        pretrained (str, optional): Path to the checkpoint. If None, it will
            try to find a pre-defined weight from the model you specified
            (only work if the ``model`` is a model name). Defaults to None.
        device (str, optional): Device to run inference. If None, the available
            device will be automatically used. Defaults to None.
        **kwargs: Other keyword arguments to initialize the model (only work if
            the ``model`` is a model name).

    Example:
        >>> from mmpretrain import ImageToTextRetrievalInferencer
        >>> inferencer = ImageToTextRetrievalInferencer(
        ...     'blip-base_3rdparty_retrieval',
        ...     prototype=['cat', 'dog', 'snake', 'bird'],
        ...     prototype_cache='i2t_retri.pth')
        >>> inferencer('demo/bird.JPEG')[0]
        {'match_score': tensor(0.3855, device='cuda:0'),
         'sample_idx': 1,
         'sample': {'img_path': './demo/cat-dog.png'}}
    """  # noqa: E501

    visualize_kwargs: set = {
        'draw_score', 'resize', 'show_dir', 'show', 'wait_time', 'topk'
    }
    postprocess_kwargs: set = {'topk'}

    def __init__(self,
                 model: ModelType,
                 prototype,
                 prototype_cache=None,
                 fast_match=True,
                 prepare_batch_size=8,
                 pretrained: Union[bool, str] = True,
                 device: Union[str, torch.device, None] = None,
                 **kwargs) -> None:
        super().__init__(
            model=model, pretrained=pretrained, device=device, **kwargs)

        self.img_pipeline, self.text_pipeline = self.pipeline

        if hasattr(self.model, 'fast_match'):
            self.model.fast_match = fast_match

        self.prototype_dataset = self._prepare_prototype(
            prototype, cache=prototype_cache, batch_size=prepare_batch_size)

    def _prepare_prototype(self, prototype, cache=None, batch_size=8):
        from mmengine.dataset import DefaultSampler
        from torch.utils.data import DataLoader

        def build_dataloader(dataset):
            return DataLoader(
                [
                    self.text_pipeline({
                        'sample_idx': i,
                        'text': text
                    }) for i, text in enumerate(dataset)
                ],
                batch_size=batch_size,
                collate_fn=default_collate,
                sampler=DefaultSampler(dataset, shuffle=False),
                persistent_workers=False,
            )

        if isinstance(prototype, str):
            # A file path of a list of string
            dataset = mmengine.list_from_file(prototype)
        elif mmengine.utils.is_seq_of(prototype, str):
            dataset = prototype
        else:
            raise TypeError(f'Unsupported prototype type {type(prototype)}.')

        dataloader = build_dataloader(dataset)

        if cache is not None and Path(cache).exists():
            self.prototype = torch.load(cache)
        else:
            prototype = []
            for data_batch in track(dataloader, 'Prepare prototype...'):
                with torch.no_grad():
                    data_batch = self.model.data_preprocessor(
                        data_batch, False)
                    feats = self.model._run_forward(data_batch, mode='tensor')
                    prototype.append(feats)
            prototype = {
                k: torch.cat([d[k] for d in prototype])
                for k in prototype[0]
            }
            self.prototype = prototype

        from mmengine.logging import MMLogger
        logger = MMLogger.get_current_instance()
        if cache is None:
            logger.info('The prototype has been prepared, you can use '
                        '`save_prototype` to dump it into a pickle '
                        'file for the future usage.')
        elif not Path(cache).exists():
            self.save_prototype(cache)
            logger.info(f'The prototype has been saved at {cache}.')

        return dataset

    def save_prototype(self, path):
        torch.save(self.prototype, path)

    def __call__(self,
                 inputs: ImageType,
                 return_datasamples: bool = False,
                 batch_size: int = 1,
                 **kwargs) -> dict:
        """Call the inferencer.

        Args:
            inputs (str | array | list): The image path or array, or a list of
                images.
            return_datasamples (bool): Whether to return results as
                :obj:`DataSample`. Defaults to False.
            batch_size (int): Batch size. Defaults to 1.
            resize (int, optional): Resize the long edge of the image to the
                specified length before visualization. Defaults to None.
            draw_score (bool): Whether to draw the match scores.
                Defaults to True.
            show (bool): Whether to display the visualization result in a
                window. Defaults to False.
            wait_time (float): The display time (s). Defaults to 0, which means
                "forever".
            show_dir (str, optional): If not None, save the visualization
                results in the specified directory. Defaults to None.

        Returns:
            list: The inference results.
        """
        return super().__call__(inputs, return_datasamples, batch_size,
                                **kwargs)

    @torch.no_grad()
    def forward(self, data: dict, **kwargs):
        """Feed the inputs to the model."""
        data = self.model.data_preprocessor(data, False)
        feats = self.prototype.copy()
        feats.update(self.model.extract_feat(images=data['images']))
        return self.model.predict_all(
            feats, data['data_samples'], cal_t2i=False)[0]

    def _init_pipeline(self, cfg: Config) -> Callable:
        test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline
        test_transfroms = [TRANSFORMS.build(t) for t in test_pipeline_cfg]
        img_info = {'img': np.zeros((224, 224, 3), dtype=np.uint8)}
        text_info = {'text': 'example'}
        img_pipeline = Compose(filter_transforms(test_transfroms, img_info))
        text_pipeline = Compose(filter_transforms(test_transfroms, text_info))
        return img_pipeline, text_pipeline

    def preprocess(self, inputs: List[ImageType], batch_size: int = 1):

        def load_image(input_):
            img = imread(input_)
            if img is None:
                raise ValueError(f'Failed to read image {input_}.')
            return dict(
                img=img,
                img_shape=img.shape[:2],
                ori_shape=img.shape[:2],
            )

        pipeline = Compose([load_image, self.img_pipeline])

        chunked_data = self._get_chunk_data(map(pipeline, inputs), batch_size)
        yield from map(default_collate, chunked_data)

    def visualize(self,
                  ori_inputs: List[ImageType],
                  preds: List[DataSample],
                  topk: int = 3,
                  resize: Optional[int] = 224,
                  show: bool = False,
                  wait_time: int = 0,
                  draw_score=True,
                  show_dir=None):
        if not show and show_dir is None:
            return None

        if self.visualizer is None:
            from mmpretrain.visualization import UniversalVisualizer
            self.visualizer = UniversalVisualizer()

        visualization = []
        for i, (input_, data_sample) in enumerate(zip(ori_inputs, preds)):
            image = imread(input_)
            if isinstance(input_, str):
                # The image loaded from path is BGR format.
                image = image[..., ::-1]
                name = Path(input_).stem
            else:
                name = str(i)

            if show_dir is not None:
                show_dir = Path(show_dir)
                show_dir.mkdir(exist_ok=True)
                out_file = str((show_dir / name).with_suffix('.png'))
            else:
                out_file = None

            self.visualizer.visualize_i2t_retrieval(
                image,
                data_sample,
                self.prototype_dataset,
                topk=topk,
                resize=resize,
                draw_score=draw_score,
                show=show,
                wait_time=wait_time,
                name=name,
                out_file=out_file)
            visualization.append(self.visualizer.get_image())
        if show:
            self.visualizer.close()
        return visualization

    def postprocess(
        self,
        preds: List[DataSample],
        visualization: List[np.ndarray],
        return_datasamples=False,
        topk=1,
    ) -> dict:
        if return_datasamples:
            return preds

        results = []
        for data_sample in preds:
            match_scores, indices = torch.topk(data_sample.pred_score, k=topk)
            matches = []
            for match_score, sample_idx in zip(match_scores, indices):
                text = self.prototype_dataset[sample_idx.item()]
                matches.append({
                    'match_score': match_score,
                    'sample_idx': sample_idx,
                    'text': text
                })
            results.append(matches)

        return results

    @staticmethod
    def list_models(pattern: Optional[str] = None):
        """List all available model names.

        Args:
            pattern (str | None): A wildcard pattern to match model names.

        Returns:
            List[str]: a list of model names.
        """
        return list_models(pattern=pattern, task='Image-To-Text Retrieval')