File size: 26,811 Bytes
1c3eb47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
# Copyright (c) OpenMMLab. All rights reserved.
import datetime
import itertools
import os.path as osp
import tempfile
from collections import OrderedDict
from typing import Dict, List, Optional, Sequence, Union

import lightning
import mmengine
import numpy as np
import torch
from mmengine.fileio import dump, get_local_path, load
from mmengine.logging import MMLogger
from terminaltables import AsciiTable

from mmdet.datasets.api_wrappers import COCO, COCOeval
from mmdet.structures.mask import encode_mask_results
from mmdet.evaluation.functional import eval_recalls
from torchmetrics import Metric
from mmpl.registry import METRICS
from torchmetrics.utilities import rank_zero_info


@METRICS.register_module()
class CocoPLMetric(Metric):
    """COCO evaluation metric.

    Evaluate AR, AP, and mAP for detection tasks including proposal/box
    detection and instance segmentation. Please refer to
    https://cocodataset.org/#detection-eval for more details.

    Args:
        ann_file (str, optional): Path to the coco format annotation file.
            If not specified, ground truth annotations from the dataset will
            be converted to coco format. Defaults to None.
        metric (str | List[str]): Metrics to be evaluated. Valid metrics
            include 'bbox', 'segm', 'proposal', and 'proposal_fast'.
            Defaults to 'bbox'.
        classwise (bool): Whether to evaluate the metric class-wise.
            Defaults to False.
        proposal_nums (Sequence[int]): Numbers of proposals to be evaluated.
            Defaults to (100, 300, 1000).
        iou_thrs (float | List[float], optional): IoU threshold to compute AP
            and AR. If not specified, IoUs from 0.5 to 0.95 will be used.
            Defaults to None.
        metric_items (List[str], optional): Metric result names to be
            recorded in the evaluation result. Defaults to None.
        format_only (bool): Format the output results without perform
            evaluation. It is useful when you want to format the result
            to a specific format and submit it to the test server.
            Defaults to False.
        outfile_prefix (str, optional): The prefix of json files. It includes
            the file path and the prefix of filename, e.g., "a/b/prefix".
            If not specified, a temp file will be created. Defaults to None.
        file_client_args (dict, optional): Arguments to instantiate the
            corresponding backend in mmdet <= 3.0.0rc6. Defaults to None.
        backend_args (dict, optional): Arguments to instantiate the
            corresponding backend. Defaults to None.
        collect_device (str): Device name used for collecting results from
            different ranks during distributed training. Must be 'cpu' or
            'gpu'. Defaults to 'cpu'.
        prefix (str, optional): The prefix that will be added in the metric
            names to disambiguate homonymous metrics of different evaluators.
            If prefix is not provided in the argument, self.default_prefix
            will be used instead. Defaults to None.
        sort_categories (bool): Whether sort categories in annotations. Only
            used for `Objects365V1Dataset`. Defaults to False.
    """
    # default_prefix: Optional[str] = 'coco'

    def __init__(self,
                 ann_file: Optional[str] = None,
                 metric: Union[str, List[str]] = 'bbox',
                 classwise: bool = False,
                 proposal_nums: Sequence[int] = (100, 300, 1000),
                 iou_thrs: Optional[Union[float, Sequence[float]]] = None,
                 metric_items: Optional[Sequence[str]] = None,
                 format_only: bool = False,
                 outfile_prefix: Optional[str] = None,
                 file_client_args: dict = None,
                 backend_args: dict = None,
                 collect_device: str = 'cpu',
                 prefix: Optional[str] = None,
                 sort_categories: bool = False,
                 **kwargs
                 ) -> None:
        super().__init__(**kwargs)
        self._dataset_meta: Union[None, dict] = None
        # coco evaluation metrics
        self.metrics = metric if isinstance(metric, list) else [metric]
        allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast']
        for metric in self.metrics:
            if metric not in allowed_metrics:
                raise KeyError(
                    "metric should be one of 'bbox', 'segm', 'proposal', "
                    f"'proposal_fast', but got {metric}.")

        # do class wise evaluation, default False
        self.classwise = classwise

        # proposal_nums used to compute recall or precision.
        self.proposal_nums = list(proposal_nums)

        # iou_thrs used to compute recall or precision.
        if iou_thrs is None:
            iou_thrs = np.linspace(
                .5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
        self.iou_thrs = iou_thrs
        self.metric_items = metric_items
        self.format_only = format_only
        if self.format_only:
            assert outfile_prefix is not None, 'outfile_prefix must be not'
            'None when format_only is True, otherwise the result files will'
            'be saved to a temp directory which will be cleaned up at the end.'

        self.outfile_prefix = outfile_prefix

        self.backend_args = backend_args
        if file_client_args is not None:
            raise RuntimeError(
                'The `file_client_args` is deprecated, '
                'please use `backend_args` instead, please refer to'
                'https://github.com/open-mmlab/mmdetection/blob/main/configs/_base_/datasets/coco_detection.py'  # noqa: E501
            )

        # if ann_file is not specified,
        # initialize coco api with the converted dataset
        if ann_file is not None:
            with get_local_path(
                    ann_file, backend_args=self.backend_args) as local_path:
                self._coco_api = COCO(local_path)
                if sort_categories:
                    # 'categories' list in objects365_train.json and
                    # objects365_val.json is inconsistent, need sort
                    # list(or dict) before get cat_ids.
                    cats = self._coco_api.cats
                    sorted_cats = {i: cats[i] for i in sorted(cats)}
                    self._coco_api.cats = sorted_cats
                    categories = self._coco_api.dataset['categories']
                    sorted_categories = sorted(
                        categories, key=lambda i: i['id'])
                    self._coco_api.dataset['categories'] = sorted_categories
        else:
            self._coco_api = None

        # handle dataset lazy init
        self.cat_ids = None
        self.img_ids = None

        self.add_state('results', default=[], dist_reduce_fx=None)

    @property
    def dataset_meta(self) -> Optional[dict]:
        """Optional[dict]: Meta info of the dataset."""
        return self._dataset_meta

    @dataset_meta.setter
    def dataset_meta(self, dataset_meta: dict) -> None:
        """Set the dataset meta info to the metric."""
        self._dataset_meta = dataset_meta

    def fast_eval_recall(self,
                         results: List[dict],
                         proposal_nums: Sequence[int],
                         iou_thrs: Sequence[float],
                         logger: Optional[MMLogger] = None) -> np.ndarray:
        """Evaluate proposal recall with COCO's fast_eval_recall.

        Args:
            results (List[dict]): Results of the dataset.
            proposal_nums (Sequence[int]): Proposal numbers used for
                evaluation.
            iou_thrs (Sequence[float]): IoU thresholds used for evaluation.
            logger (MMLogger, optional): Logger used for logging the recall
                summary.
        Returns:
            np.ndarray: Averaged recall results.
        """
        gt_bboxes = []
        pred_bboxes = [result['bboxes'] for result in results]
        for i in range(len(self.img_ids)):
            ann_ids = self._coco_api.get_ann_ids(img_ids=self.img_ids[i])
            ann_info = self._coco_api.load_anns(ann_ids)
            if len(ann_info) == 0:
                gt_bboxes.append(np.zeros((0, 4)))
                continue
            bboxes = []
            for ann in ann_info:
                if ann.get('ignore', False) or ann['iscrowd']:
                    continue
                x1, y1, w, h = ann['bbox']
                bboxes.append([x1, y1, x1 + w, y1 + h])
            bboxes = np.array(bboxes, dtype=np.float32)
            if bboxes.shape[0] == 0:
                bboxes = np.zeros((0, 4))
            gt_bboxes.append(bboxes)

        recalls = eval_recalls(
            gt_bboxes, pred_bboxes, proposal_nums, iou_thrs, logger=logger)
        ar = recalls.mean(axis=1)
        return ar

    def xyxy2xywh(self, bbox: np.ndarray) -> list:
        """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO
        evaluation.

        Args:
            bbox (numpy.ndarray): The bounding boxes, shape (4, ), in
                ``xyxy`` order.

        Returns:
            list[float]: The converted bounding boxes, in ``xywh`` order.
        """

        _bbox: List = bbox.tolist()
        return [
            _bbox[0],
            _bbox[1],
            _bbox[2] - _bbox[0],
            _bbox[3] - _bbox[1],
        ]

    def results2json(self, results: Sequence[dict],
                     outfile_prefix: str) -> dict:
        """Dump the detection results to a COCO style json file.

        There are 3 types of results: proposals, bbox predictions, mask
        predictions, and they have different data types. This method will
        automatically recognize the type, and dump them to json files.

        Args:
            results (Sequence[dict]): Testing results of the
                dataset.
            outfile_prefix (str): The filename prefix of the json files. If the
                prefix is "somepath/xxx", the json files will be named
                "somepath/xxx.bbox.json", "somepath/xxx.segm.json",
                "somepath/xxx.proposal.json".

        Returns:
            dict: Possible keys are "bbox", "segm", "proposal", and
            values are corresponding filenames.
        """
        bbox_json_results = []
        segm_json_results = [] if 'masks' in results[0] else None
        for idx, result in enumerate(results):
            image_id = result.get('img_id', idx)
            labels = result['labels']
            bboxes = result['bboxes']
            scores = result['scores']
            # bbox results
            for i, label in enumerate(labels):
                data = dict()
                data['image_id'] = image_id
                data['bbox'] = self.xyxy2xywh(bboxes[i])
                data['score'] = float(scores[i])
                data['category_id'] = self.cat_ids[label]
                bbox_json_results.append(data)

            if segm_json_results is None:
                continue

            # segm results
            masks = result['masks']
            mask_scores = result.get('mask_scores', scores)
            for i, label in enumerate(labels):
                data = dict()
                data['image_id'] = image_id
                data['bbox'] = self.xyxy2xywh(bboxes[i])
                data['score'] = float(mask_scores[i])
                data['category_id'] = self.cat_ids[label]
                if isinstance(masks[i]['counts'], bytes):
                    masks[i]['counts'] = masks[i]['counts'].decode()
                data['segmentation'] = masks[i]
                segm_json_results.append(data)

        result_files = dict()
        result_files['bbox'] = f'{outfile_prefix}.bbox.json'
        result_files['proposal'] = f'{outfile_prefix}.bbox.json'
        dump(bbox_json_results, result_files['bbox'])

        if segm_json_results is not None:
            result_files['segm'] = f'{outfile_prefix}.segm.json'
            dump(segm_json_results, result_files['segm'])

        return result_files

    def gt_to_coco_json(self, gt_dicts: Sequence[dict],
                        outfile_prefix: str) -> str:
        """Convert ground truth to coco format json file.

        Args:
            gt_dicts (Sequence[dict]): Ground truth of the dataset.
            outfile_prefix (str): The filename prefix of the json files. If the
                prefix is "somepath/xxx", the json file will be named
                "somepath/xxx.gt.json".
        Returns:
            str: The filename of the json file.
        """
        categories = [
            dict(id=id, name=name)
            for id, name in enumerate(self.dataset_meta['classes'])
        ]
        image_infos = []
        annotations = []

        for idx, gt_dict in enumerate(gt_dicts):
            img_id = gt_dict.get('img_id', idx)
            image_info = dict(
                id=img_id,
                width=gt_dict['width'],
                height=gt_dict['height'],
                file_name='')
            image_infos.append(image_info)
            for ann in gt_dict['anns']:
                label = ann['bbox_label']
                bbox = ann['bbox']
                coco_bbox = [
                    bbox[0],
                    bbox[1],
                    bbox[2] - bbox[0],
                    bbox[3] - bbox[1],
                ]

                annotation = dict(
                    id=len(annotations) +
                    1,  # coco api requires id starts with 1
                    image_id=img_id,
                    bbox=coco_bbox,
                    iscrowd=ann.get('ignore_flag', 0),
                    category_id=int(label),
                    area=coco_bbox[2] * coco_bbox[3])
                if ann.get('mask', None):
                    mask = ann['mask']
                    # area = mask_util.area(mask)
                    if isinstance(mask, dict) and isinstance(
                            mask['counts'], bytes):
                        mask['counts'] = mask['counts'].decode()
                    annotation['segmentation'] = mask
                    # annotation['area'] = float(area)
                annotations.append(annotation)

        info = dict(
            date_created=str(datetime.datetime.now()),
            description='Coco json file converted by mmdet CocoMetric.')
        coco_json = dict(
            info=info,
            images=image_infos,
            categories=categories,
            licenses=None,
        )
        if len(annotations) > 0:
            coco_json['annotations'] = annotations
        converted_json_path = f'{outfile_prefix}.gt.json'
        dump(coco_json, converted_json_path)
        return converted_json_path

    # TODO: data_batch is no longer needed, consider adjusting the
    #  parameter position
    def update(self, data_batch: dict, data_samples: Sequence[dict]) -> None:
        """Process one batch of data samples and predictions. The processed
        results should be stored in ``self.results``, which will be used to
        compute the metrics when all batches have been processed.

        Args:
            data_batch (dict): A batch of data from the dataloader.
            data_samples (Sequence[dict]): A batch of data samples that
                contain annotations and predictions.
        """
        for data_sample in data_samples:
            result = dict()
            pred = data_sample.pred_instances
            result['img_id'] = data_sample.img_id
            result['bboxes'] = pred['bboxes'].cpu().numpy()
            result['scores'] = pred['scores'].cpu().numpy()
            result['labels'] = pred['labels'].cpu().numpy()
            # encode mask to RLE
            if 'masks' in pred:
                result['masks'] = encode_mask_results(
                    pred['masks'].detach().cpu().numpy()) if isinstance(
                        pred['masks'], torch.Tensor) else pred['masks']
            # some detectors use different scores for bbox and mask
            if 'mask_scores' in pred:
                result['mask_scores'] = pred['mask_scores'].cpu().numpy()

            # parse gt
            gt = dict()
            gt['width'] = data_sample.ori_shape[1]
            gt['height'] = data_sample.ori_shape[0]
            gt['img_id'] = data_sample.img_id
            if self._coco_api is None:
                # TODO: Need to refactor to support LoadAnnotations
                assert 'gt_instances' in data_sample, \
                    'ground truth is required for evaluation when ' \
                    '`ann_file` is not provided'
                gt['anns'] = []
                for x_data in data_sample.gt_instances:
                    mask_ = encode_mask_results(x_data['masks'].masks)
                    assert len(mask_) == 1, \
                        'Only support one mask per instance for now'
                    gt['anns'].append(
                        dict(
                            bbox_label=x_data['labels'].item(),
                            bbox=x_data['bboxes'].cpu().numpy().reshape(4),
                            mask=mask_[0]
                        )
                    )
            # add converted result to the results list
            self.results.append((gt, result))

    def compute(self) -> Dict[str, float]:
        """Compute the metrics from processed results.

        Args:
            results (list): The processed results of each batch.

        Returns:
            Dict[str, float]: The computed metrics. The keys are the names of
            the metrics, and the values are corresponding results.
        """
        results = self.results
        logger: MMLogger = MMLogger.get_current_instance()

        # split gt and prediction list
        gts, preds = zip(*results)

        tmp_dir = None
        if self.outfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            outfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            outfile_prefix = self.outfile_prefix

        if self._coco_api is None:
            # use converted gt json file to initialize coco api
            logger.info('Converting ground truth to coco format...')
            coco_json_path = self.gt_to_coco_json(
                gt_dicts=gts, outfile_prefix=outfile_prefix)
            self._coco_api = COCO(coco_json_path)

        # handle lazy init
        if self.cat_ids is None:
            self.cat_ids = self._coco_api.get_cat_ids(
                cat_names=self.dataset_meta['classes'])
        if self.img_ids is None:
            self.img_ids = self._coco_api.get_img_ids()

        # convert predictions to coco format and dump to json file
        result_files = self.results2json(preds, outfile_prefix)

        eval_results = OrderedDict()
        if self.format_only:
            logger.info('results are saved in '
                        f'{osp.dirname(outfile_prefix)}')
            return eval_results

        for metric in self.metrics:
            logger.info(f'Evaluating {metric}...')

            # TODO: May refactor fast_eval_recall to an independent metric?
            # fast eval recall
            if metric == 'proposal_fast':
                ar = self.fast_eval_recall(
                    preds, self.proposal_nums, self.iou_thrs, logger=logger)
                log_msg = []
                for i, num in enumerate(self.proposal_nums):
                    eval_results[f'AR@{num}'] = ar[i]
                    log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}')
                log_msg = ''.join(log_msg)
                logger.info(log_msg)
                continue

            # evaluate proposal, bbox and segm
            iou_type = 'bbox' if metric == 'proposal' else metric
            if metric not in result_files:
                raise KeyError(f'{metric} is not in results')
            try:
                predictions = load(result_files[metric])
                if iou_type == 'segm':
                    # Refer to https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.py#L331  # noqa
                    # When evaluating mask AP, if the results contain bbox,
                    # cocoapi will use the box area instead of the mask area
                    # for calculating the instance area. Though the overall AP
                    # is not affected, this leads to different
                    # small/medium/large mask AP results.
                    for x in predictions:
                        x.pop('bbox')
                coco_dt = self._coco_api.loadRes(predictions)

            except IndexError:
                # for k, v in eval_results.items():
                #     eval_results[k] = torch.tensor(v).to(self.device)
                # self._coco_api = None
                logger.error(
                    'The testing results of the whole dataset is empty.')
                break

            coco_eval = COCOeval(self._coco_api, coco_dt, iou_type)

            coco_eval.params.catIds = self.cat_ids
            coco_eval.params.imgIds = self.img_ids
            coco_eval.params.maxDets = list(self.proposal_nums)
            coco_eval.params.iouThrs = self.iou_thrs

            # mapping of cocoEval.stats
            coco_metric_names = {
                'mAP': 0,
                'mAP_50': 1,
                'mAP_75': 2,
                'mAP_s': 3,
                'mAP_m': 4,
                'mAP_l': 5,
                'AR@100': 6,
                'AR@300': 7,
                'AR@1000': 8,
                'AR_s@1000': 9,
                'AR_m@1000': 10,
                'AR_l@1000': 11
            }
            metric_items = self.metric_items
            if metric_items is not None:
                for metric_item in metric_items:
                    if metric_item not in coco_metric_names:
                        raise KeyError(
                            f'metric item "{metric_item}" is not supported')

            if metric == 'proposal':
                coco_eval.params.useCats = 0
                coco_eval.evaluate()
                coco_eval.accumulate()
                coco_eval.summarize()
                if metric_items is None:
                    metric_items = [
                        'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000',
                        'AR_m@1000', 'AR_l@1000'
                    ]

                for item in metric_items:
                    val = float(
                        f'{coco_eval.stats[coco_metric_names[item]]:.3f}')
                    eval_results[item] = val
            else:
                coco_eval.evaluate()
                coco_eval.accumulate()
                coco_eval.summarize()
                if self.classwise:  # Compute per-category AP
                    # Compute per-category AP
                    # from https://github.com/facebookresearch/detectron2/
                    precisions = coco_eval.eval['precision']
                    # precision: (iou, recall, cls, area range, max dets)
                    assert len(self.cat_ids) == precisions.shape[2]

                    results_per_category = []
                    for idx, cat_id in enumerate(self.cat_ids):
                        t = []
                        # area range index 0: all area ranges
                        # max dets index -1: typically 100 per image
                        nm = self._coco_api.loadCats(cat_id)[0]
                        precision = precisions[:, :, idx, 0, -1]
                        precision = precision[precision > -1]
                        if precision.size:
                            ap = np.mean(precision)
                        else:
                            ap = float('nan')
                        t.append(f'{nm["name"]}')
                        t.append(f'{round(ap, 3)}')
                        eval_results[f'{nm["name"]}_precision'] = round(ap, 3)

                        # indexes of IoU  @50 and @75
                        for iou in [0, 5]:
                            precision = precisions[iou, :, idx, 0, -1]
                            precision = precision[precision > -1]
                            if precision.size:
                                ap = np.mean(precision)
                            else:
                                ap = float('nan')
                            t.append(f'{round(ap, 3)}')

                        # indexes of area of small, median and large
                        for area in [1, 2, 3]:
                            precision = precisions[:, :, idx, area, -1]
                            precision = precision[precision > -1]
                            if precision.size:
                                ap = np.mean(precision)
                            else:
                                ap = float('nan')
                            t.append(f'{round(ap, 3)}')
                        results_per_category.append(tuple(t))

                    num_columns = len(results_per_category[0])
                    results_flatten = list(
                        itertools.chain(*results_per_category))
                    headers = [
                        'category', 'mAP', 'mAP_50', 'mAP_75', 'mAP_s',
                        'mAP_m', 'mAP_l'
                    ]
                    results_2d = itertools.zip_longest(*[
                        results_flatten[i::num_columns]
                        for i in range(num_columns)
                    ])
                    table_data = [headers]
                    table_data += [result for result in results_2d]
                    table = AsciiTable(table_data)
                    # if mmengine.dist.get_local_rank() == 0:
                    rank_zero_info('\n' + table.table)

                if metric_items is None:
                    metric_items = [
                        'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l'
                    ]

                for metric_item in metric_items:
                    key = f'{metric}_{metric_item}'
                    val = coco_eval.stats[coco_metric_names[metric_item]]
                    eval_results[key] = float(f'{round(val, 3)}')

                ap = coco_eval.stats[:6]
                # if mmengine.dist.get_local_rank() == 0:

                rank_zero_info(f'{metric}_mAP_copypaste: {ap[0]:.3f} '
                            f'{ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} '
                            f'{ap[4]:.3f} {ap[5]:.3f}')

        if tmp_dir is not None:
            tmp_dir.cleanup()
        for k, v in eval_results.items():
            eval_results[k] = torch.tensor(v).to(self.device)
        self._coco_api = None
        return eval_results