Spaces:
Runtime error
Runtime error
Kwasiasomani
commited on
Commit
•
61c3f9a
1
Parent(s):
8fca954
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Loading key libraries
|
2 |
+
import streamlit as st
|
3 |
+
import os
|
4 |
+
import pickle
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import re
|
8 |
+
from pathlib import Path
|
9 |
+
from PIL import Image
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import seaborn as sns
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
# Setting the page configurations
|
16 |
+
st.set_page_config(page_title= "Prediction Forecasting", layout= "wide", initial_sidebar_state= "auto")
|
17 |
+
|
18 |
+
# Setting the page title
|
19 |
+
st.title("Grocery Store Forecasting Prediction")
|
20 |
+
|
21 |
+
# Load the saved data
|
22 |
+
df = pd.read_csv('Grocery.csv')
|
23 |
+
|
24 |
+
|
25 |
+
toolkit = "toolkit_folder"
|
26 |
+
@st.cache_resource
|
27 |
+
def load_toolkit(filepath = toolkit):
|
28 |
+
with open(toolkit, "rb") as file:
|
29 |
+
loaded_toolkit = pickle.load(file)
|
30 |
+
return loaded_toolkit
|
31 |
+
|
32 |
+
|
33 |
+
toolkit = load_toolkit()
|
34 |
+
Encoder = toolkit["OneHotEncoder"]
|
35 |
+
model = toolkit["model"]
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
# main sections of the app
|
40 |
+
menu = st.sidebar.radio('menu',['Home view','Prediction target'])
|
41 |
+
|
42 |
+
if menu == 'Home view':
|
43 |
+
st.write('Grocery Store Time Series Forecasting')
|
44 |
+
st.image('images1.jpg',width = 450)
|
45 |
+
st.write('Graphical representation and Data Overview')
|
46 |
+
if st.checkbox('Data Set '):
|
47 |
+
st.table(df.head(15))
|
48 |
+
st.title('Charts')
|
49 |
+
graph = st.selectbox('Varieties of graphs',['scatter plot','Bar chat','Histogram'])
|
50 |
+
if graph == 'scatter plot':
|
51 |
+
fig,ax = plt.subplots(figsize=(10,5))
|
52 |
+
sns.scatterplot(y = 'target',x = 'onpromotion',data = df.iloc[:1000],palette = 'bright',hue = 'city');
|
53 |
+
st.pyplot(fig)
|
54 |
+
|
55 |
+
if graph == 'Bar chat':
|
56 |
+
fig,ax = plt.subplots(figsize=(10,5))
|
57 |
+
t = df.groupby("city")["target"].sum().reset_index().sort_values(by="target",ascending=False).iloc[:10]
|
58 |
+
sns.barplot(data=t[:20] , y="target", x="city", palette='Blues_d')
|
59 |
+
st.pyplot(fig)
|
60 |
+
|
61 |
+
if graph == 'Histogram':
|
62 |
+
fig,ax = plt.subplots(figsize=(10,5))
|
63 |
+
st.write('Target Categories')
|
64 |
+
sns.distplot(df.target.iloc[:20], kde=True)
|
65 |
+
st.pyplot(fig)
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
if menu == 'Prediction target':
|
72 |
+
st.image('image 2.jpg', width = 460)
|
73 |
+
|
74 |
+
st.sidebar.markdown('User Input Details and Information')
|
75 |
+
|
76 |
+
store_id= st.sidebar.selectbox('store_id', options = sorted(list(df['store_id'].unique())))
|
77 |
+
category_id= st.sidebar.selectbox('categegory_id',options = sorted(list(df['category_id'].unique())))
|
78 |
+
onpromotion= st.sidebar.number_input('onpromotion', min_value= df["onpromotion"].min(), value= df["onpromotion"].min())
|
79 |
+
year = st.sidebar.selectbox('year', options = sorted(list(df['year'].unique())))
|
80 |
+
month = st.sidebar.selectbox('month', options = sorted(list(df['month'].unique())))
|
81 |
+
dayofmonth= st.sidebar.number_input('dayofmonth', min_value= df["dayofmonth"].min(), value= df["dayofmonth"].min())
|
82 |
+
dayofweek = st.sidebar.number_input('dayofweek', min_value= df["dayofweek"].min(), value= df["dayofweek"].min())
|
83 |
+
dayofyear = st.sidebar.number_input('dayofyear', min_value= df["dayofyear"].min(), value= df["dayofyear"].min())
|
84 |
+
weekofyear = st.sidebar.number_input('weekofyear', min_value= df["weekofyear"].min(), value= df["weekofyear"].min())
|
85 |
+
quarter = st.sidebar.number_input('quarter', min_value= df["quarter"].min(), value= df["quarter"].min())
|
86 |
+
is_month_start = st.sidebar.number_input('is_month_start', min_value= df["is_month_start"].min(), value= df["is_month_start"].min())
|
87 |
+
is_month_end = st.sidebar.number_input('is_month_end', min_value= df["is_month_end"].min(), value= df["is_month_end"].min())
|
88 |
+
is_quarter_start = st.sidebar.number_input('is_quarter_start', min_value= df["is_quarter_start"].min(), value= df["is_quarter_start"].min())
|
89 |
+
is_quarter_end = st.sidebar.number_input('is_quarter_end', min_value= df["is_quarter_end"].min(), value= df["is_quarter_end"].min())
|
90 |
+
is_year_start = st.sidebar.number_input('is_year_start', min_value= df["is_year_start"].min(), value= df["is_year_start"].min())
|
91 |
+
is_year_end = st.sidebar.number_input('is_year_end', min_value= df["is_year_end"].min(), value= df["is_year_end"].min())
|
92 |
+
year_weekofyear = st.sidebar.number_input('year_weekofyear', min_value= df["year_weekofyear"].min(), value= df["year_weekofyear"].min())
|
93 |
+
city = st.sidebar.selectbox("city:", options= sorted(set(df["city"])))
|
94 |
+
store_type= st.sidebar.number_input('type', min_value= df["type"].min(), value= df["type"].min())
|
95 |
+
cluster = st.sidebar.selectbox('cluster', options = sorted(list(df['cluster'].unique())))
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
input_df = {
|
100 |
+
'store_id':[store_id],
|
101 |
+
'category_id':[category_id],
|
102 |
+
'onpromotion' :[onpromotion],
|
103 |
+
'year' : [year],
|
104 |
+
'month' :[month],
|
105 |
+
'dayofmonth' :[dayofmonth],
|
106 |
+
'dayofweek' : [dayofweek],
|
107 |
+
'dayofyear' : [dayofyear],
|
108 |
+
'weekofyear' : weekofyear,
|
109 |
+
'quarter' : [quarter],
|
110 |
+
'is_month_start' : [is_month_start],
|
111 |
+
'is_month_end' : [is_month_start],
|
112 |
+
'is_quarter_start' : [is_quarter_start],
|
113 |
+
'is_quarter_end' : [is_quarter_end],
|
114 |
+
'is_year_start' : [is_year_start],
|
115 |
+
'is_year_end' : [is_year_end],
|
116 |
+
'year_weekofyear' : [year_weekofyear],
|
117 |
+
'city' : [city],
|
118 |
+
'type' : [store_type],
|
119 |
+
'cluster': [cluster]
|
120 |
+
}
|
121 |
+
|
122 |
+
# Put the input dictionary in a dataset
|
123 |
+
input_data = pd.DataFrame(input_df)
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
# defining categories and numeric columns
|
128 |
+
|
129 |
+
col = ['city']
|
130 |
+
columns = list(input_data.columns)
|
131 |
+
encoded_cat = Encoder.transform(input_data[col])
|
132 |
+
encoded_cols = Encoder.get_feature_names()
|
133 |
+
encoded_cat_ = pd.DataFrame(encoded_cat, columns=encoded_cols)
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
# we dropped the categorical encoder column before we concat
|
138 |
+
train_enc = input_data.drop(['city'],axis = 1)
|
139 |
+
input_d = pd.concat([train_enc, encoded_cat_], axis=1)
|
140 |
+
|
141 |
+
# convert input_data to a numpy array before flattening to convert it back to a 2D array
|
142 |
+
input_df= input_d.to_numpy()
|
143 |
+
prediction = model.predict(input_df.flatten().reshape(1, -1))
|
144 |
+
|
145 |
+
|
146 |
+
if st.button('Predict'):
|
147 |
+
st.success('The predicted target is ' + str(round(prediction[0],2)))
|
148 |
+
|
149 |
+
|