Spaces:
Runtime error
Runtime error
File size: 5,908 Bytes
4714bf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# Loading key libraries
import streamlit as st
import os
import pickle
import numpy as np
import pandas as pd
import re
from pathlib import Path
from PIL import Image
import matplotlib.pyplot as plt
import seaborn as sns
# Setting the page configurations
st.set_page_config(page_title= "Prediction Forecasting", layout= "wide", initial_sidebar_state= "auto")
# Setting the page title
st.title("Grocery Store Forecasting Prediction")
# Load the saved data
df = pd.read_csv('Grocery.csv')
toolkit = "toolkit_folder"
@st.cache_resource
def load_toolkit(filepath = toolkit):
with open(toolkit, "rb") as file:
loaded_toolkit = pickle.load(file)
return loaded_toolkit
toolkit = load_toolkit()
Encoder = toolkit["OneHotEncoder"]
model = toolkit["model"]
# main sections of the app
menu = st.sidebar.radio('menu',['Home view','Prediction target'])
if menu == 'Home view':
st.write('Grocery Store Time Series Forecasting')
st.image('images1.jpg',width = 450)
st.write('Graphical representation and Data Overview')
if st.checkbox('Data Set '):
st.table(df.head(15))
st.title('Charts')
graph = st.selectbox('Varieties of graphs',['scatter plot','Bar chat','Histogram'])
if graph == 'scatter plot':
fig,ax = plt.subplots(figsize=(10,5))
sns.scatterplot(y = 'target',x = 'onpromotion',data = df.iloc[:1000],palette = 'bright',hue = 'city');
st.pyplot(fig)
if graph == 'Bar chat':
fig,ax = plt.subplots(figsize=(10,5))
t = df.groupby("city")["target"].sum().reset_index().sort_values(by="target",ascending=False).iloc[:10]
sns.barplot(data=t[:20] , y="target", x="city", palette='Blues_d')
st.pyplot(fig)
if graph == 'Histogram':
fig,ax = plt.subplots(figsize=(10,5))
st.write('Target Categories')
sns.distplot(df.target.iloc[:20], kde=True)
st.pyplot(fig)
if menu == 'Prediction target':
st.image('image 2.jpg', width = 460)
st.sidebar.markdown('User Input Details and Information')
store_id= st.sidebar.selectbox('store_id', options = sorted(list(df['store_id'].unique())))
category_id= st.sidebar.selectbox('categegory_id',options = sorted(list(df['category_id'].unique())))
onpromotion= st.sidebar.number_input('onpromotion', min_value= df["onpromotion"].min(), value= df["onpromotion"].min())
year = st.sidebar.selectbox('year', options = sorted(list(df['year'].unique())))
month = st.sidebar.selectbox('month', options = sorted(list(df['month'].unique())))
dayofmonth= st.sidebar.number_input('dayofmonth', min_value= df["dayofmonth"].min(), value= df["dayofmonth"].min())
dayofweek = st.sidebar.number_input('dayofweek', min_value= df["dayofweek"].min(), value= df["dayofweek"].min())
dayofyear = st.sidebar.number_input('dayofyear', min_value= df["dayofyear"].min(), value= df["dayofyear"].min())
weekofyear = st.sidebar.number_input('weekofyear', min_value= df["weekofyear"].min(), value= df["weekofyear"].min())
quarter = st.sidebar.number_input('quarter', min_value= df["quarter"].min(), value= df["quarter"].min())
is_month_start = st.sidebar.number_input('is_month_start', min_value= df["is_month_start"].min(), value= df["is_month_start"].min())
is_month_end = st.sidebar.number_input('is_month_end', min_value= df["is_month_end"].min(), value= df["is_month_end"].min())
is_quarter_start = st.sidebar.number_input('is_quarter_start', min_value= df["is_quarter_start"].min(), value= df["is_quarter_start"].min())
is_quarter_end = st.sidebar.number_input('is_quarter_end', min_value= df["is_quarter_end"].min(), value= df["is_quarter_end"].min())
is_year_start = st.sidebar.number_input('is_year_start', min_value= df["is_year_start"].min(), value= df["is_year_start"].min())
is_year_end = st.sidebar.number_input('is_year_end', min_value= df["is_year_end"].min(), value= df["is_year_end"].min())
year_weekofyear = st.sidebar.number_input('year_weekofyear', min_value= df["year_weekofyear"].min(), value= df["year_weekofyear"].min())
city = st.sidebar.selectbox("city:", options= sorted(set(df["city"])))
type= st.sidebar.number_input('type', min_value= df["type"].min(), value= df["type"].min())
cluster = st.sidebar.selectbox('cluster', options = sorted(list(df['cluster'].unique())))
input_df = {
'store_id':store_id,
'category_id':category_id,
'onpromotion' :onpromotion,
'year' : year,
'month' :month,
'dayofmonth' :dayofmonth,
'dayofweek' : dayofweek,
'dayofyear' : dayofyear,
'weekofyear' : weekofyear,
'quarter' : quarter,
'is_month_start' : is_month_start,
'is_month_end' : is_month_start,
'is_quarter_start' : is_quarter_start,
'is_quarter_end' : is_quarter_end,
'is_year_start' : is_year_start,
'is_year_end' : is_year_end,
'year_weekofyear' : year_weekofyear,
'city' : city,
'type' : type,
'cluster': cluster
}
# Put the input dictionary in a dataset
input_data = pd.DataFrame(input_df, index = [0])
# defining categories and numeric columns
categoric_column = ['city']
columns = list(input_data.columns)
encoded_cat = Encoder.transform(input_data[categoric_column])
# we dropped the categorical encoder column before we concat
train_enc = input_data.drop(['city'],axis = 1)
input_d = pd.concat([train_enc, encoded_cat], axis=1)
# convert input_data to a numpy array before flattening to convert it back to a 2D array
input_df= input_d.to_numpy()
prediction = model.predict(input_df.flatten().reshape(1, -1))
if st.button('Predict'):
st.success('The predicted target is ' + str(round(prediction[0],2)))
|