File size: 9,652 Bytes
d5f497d
 
 
6c91ee7
 
 
d5f497d
6c91ee7
 
 
d5f497d
 
6c91ee7
 
 
 
 
 
 
 
d5f497d
 
 
6c91ee7
 
d5f497d
 
 
 
 
6c91ee7
 
 
d5f497d
6c91ee7
d5f497d
6c91ee7
 
 
 
 
d5f497d
6c91ee7
d5f497d
6c91ee7
d5f497d
6c91ee7
d5f497d
 
6c91ee7
d5f497d
 
6c91ee7
d5f497d
6c91ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f497d
 
8004741
d5f497d
 
d4fa96f
6c91ee7
 
d4fa96f
 
6c91ee7
 
 
 
 
 
 
d5f497d
 
 
6c91ee7
 
 
 
 
 
 
d5f497d
6c91ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd4f227
78ad020
d513008
51ff674
d513008
78ad020
 
 
 
d513008
51ff674
d513008
51ff674
d5f497d
 
 
 
 
d890da3
d5f497d
 
 
 
 
 
 
f92dc60
 
 
 
 
 
 
d5f497d
 
 
 
 
 
d890da3
d5f497d
 
6c91ee7
 
 
78ad020
 
6c91ee7
 
 
d5f497d
 
 
 
 
6c91ee7
d5f497d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c91ee7
d5f497d
 
 
 
 
 
6c91ee7
d5f497d
 
6c91ee7
 
d5f497d
 
6c91ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f497d
d890da3
cbcd3a1
78ad020
 
 
d5f497d
 
6c91ee7
d5f497d
 
 
d4fa96f
78ad020
 
 
 
 
 
 
 
 
6c91ee7
78ad020
 
d5f497d
 
 
 
6c91ee7
d5f497d
 
 
78ad020
 
 
 
 
 
 
 
 
 
 
 
8004741
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import spaces
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import  AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from annotator.midas import MidasDetector
from annotator.util import resize_image, HWC3


device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")

text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)

pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
    vae=vae,
    controlnet = controlnet_depth,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    force_zeros_for_empty_prompt=False
)

pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
    vae=vae,
    controlnet = controlnet_canny,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    force_zeros_for_empty_prompt=False
)

@spaces.GPU
def process_canny_condition(image, canny_threods=[100,200]):
    np_image = image.copy()
    np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    np_image = HWC3(np_image)
    return Image.fromarray(np_image)

model_midas = MidasDetector()

@spaces.GPU
def process_depth_condition_midas(img, res = 1024):
    h,w,_ = img.shape
    img = resize_image(HWC3(img), res)
    result = HWC3(model_midas(img))
    result = cv2.resize(result, (w,h))
    return Image.fromarray(result)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU
def infer(prompt, 
          image = None, 
          controlnet_type = "Depth", 
          negative_prompt = "", 
          seed = 0, 
          randomize_seed = False,
          guidance_scale = 6.0, 
          num_inference_steps = 50,
          controlnet_conditioning_scale = 0.7,
          control_guidance_end = 0.9,
          strength = 1.0
        ):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    init_image = resize_image(image,  MAX_IMAGE_SIZE)
    if controlnet_type == "Depth":
        pipe = pipe_depth.to("cuda")
        condi_img = process_depth_condition_midas( np.array(init_image), MAX_IMAGE_SIZE)
    elif controlnet_type == "Canny":
        pipe = pipe_canny.to("cuda")
        condi_img = process_canny_condition(np.array(init_image))
    else:
        return None
    image = pipe(
        prompt= prompt ,
        image = init_image,
        controlnet_conditioning_scale = controlnet_conditioning_scale,
        control_guidance_end = control_guidance_end, 
        strength= strength , 
        control_image = condi_img,
        negative_prompt= negative_prompt , 
        num_inference_steps= num_inference_steps, 
        guidance_scale= guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image]

canny_examples = [
    ["一个漂亮的女孩,高品质,超清晰,色彩鲜艳,超高分辨率,最佳品质,8k,高清,4K",
     "image/woman_1.png", "Canny"],
    ["全景,一只可爱的白色小狗坐在杯子里,看向镜头,动漫风格,3d渲染,辛烷值渲染",
    "image/dog.png", "Canny"]
]

depth_examples = [
    ["新海诚风格,丰富的色彩,穿着绿色衬衫的女人站在田野里,唯美风景,清新明亮,斑驳的光影,最好的质量,超细节,8K画质",
     "image/woman_2.png", "Depth"],
    ["一只颜色鲜艳的小鸟,高品质,超清晰,色彩鲜艳,超高分辨率,最佳品质,8k,高清,4K",
     "image/bird.png", "Depth"]
]

css="""
#col-left {
    margin: 0 auto;
    max-width: 600px;
}
#col-right {
    margin: 0 auto;
    max-width: 750px;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

with gr.Blocks(css=css) as Kolors:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="Enter your prompt",
                    lines=2
                )
            with gr.Row():
                controlnet_type = gr.Dropdown(
                    ["Depth", "Canny"],
                    label = "Controlnet",
                    value="Depth",
                    visible=False
                )
            with gr.Row():
                image = gr.Image(label="Image", type="pil")
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    placeholder="Enter a negative prompt",
                    visible=True,
                    value="nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯"
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=6.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=30,
                    )
                with gr.Row():
                    controlnet_conditioning_scale = gr.Slider(
                        label="Controlnet Conditioning Scale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.7,
                    )
                    control_guidance_end = gr.Slider(
                        label="Control Guidance End",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.9,
                    )
                with gr.Row():
                    strength = gr.Slider(
                        label="Strength",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=1.0,
                    )
            with gr.Row():
                run_button = gr.Button("Run")
            with gr.Row():
                canny_button = gr.Button("Canny")
                depth_button = gr.Button("Depth")
            
        with gr.Column(elem_id="col-right"):
            result = gr.Gallery(label="Result", show_label=False, columns=2)
    
    with gr.Row():
        gr.Examples(
                fn = infer,
                examples = canny_examples,
                inputs = [prompt, image, controlnet_type],
                outputs = [result],
                label = "Canny"
            )
    with gr.Row():
        gr.Examples(
                fn = infer,
                examples = depth_examples,
                inputs = [prompt, image, controlnet_type],
                outputs = [result],
                label = "Depth"
            )

    run_button.click(
        fn = infer,
        inputs = [prompt, image, controlnet_type, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
        outputs = [result]
    )

    canny_button.click(
        fn = infer,
        inputs = [prompt, image, "Canny", negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
        outputs = [result]
    )

    depth_button.click(
        fn = infer,
        inputs = [prompt, image, "Depth", negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
        outputs = [result]
    )

Kolors.queue().launch(debug=True)