KwabsHug commited on
Commit
e9e3195
·
1 Parent(s): 4cc9c49

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -5
app.py CHANGED
@@ -107,10 +107,28 @@ def FrontRevSentChunk (Chunkmode, Translate, Text, langdest):
107
  FinalOutput += "\n" + translated.text
108
  return FinalOutput
109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  def SepHypandSynExpansion(text):
111
  # Tokenize the text
112
  tokens = nltk.word_tokenize(text)
113
- NoHits = "Words to pay special attention to: "
114
  FinalOutput = ""
115
 
116
  # Find synonyms and hypernyms of each word in the text
@@ -121,11 +139,13 @@ def SepHypandSynExpansion(text):
121
  synonyms += synset.lemma_names()
122
  hypernyms += [hypernym.name() for hypernym in synset.hypernyms()]
123
  if not synonyms and not hypernyms:
124
- NoHits += token + " " # f"{token} | "
125
- NoHits = set(NoHits)
126
  else:
127
- FinalOutput += "\n" f"{token}: hypernyms={hypernyms}, synonyms={synonyms}"
128
- return NoHits, FinalOutput
 
 
 
129
 
130
 
131
  def WikiSearch(term):
 
107
  FinalOutput += "\n" + translated.text
108
  return FinalOutput
109
 
110
+ # Define a function to filter out non-verb, noun, or adjective words
111
+ def filter_words(words):
112
+ # Use NLTK to tag each word with its part of speech
113
+ tagged_words = nltk.pos_tag(words)
114
+
115
+ # Define a set of parts of speech to keep (verbs, nouns, adjectives)
116
+ keep_pos = {'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'NN', 'NNS', 'NNP', 'NNPS', 'JJ', 'JJR', 'JJS'}
117
+
118
+ # Filter the list to only include words with the desired parts of speech
119
+ filtered_words = [word for word, pos in tagged_words if pos in keep_pos]
120
+
121
+ return filtered_words
122
+
123
+ # Call the function to get the filtered list of words
124
+ filtered_words = filter_words(words)
125
+
126
+ print(filtered_words)
127
+
128
  def SepHypandSynExpansion(text):
129
  # Tokenize the text
130
  tokens = nltk.word_tokenize(text)
131
+ NoHits = ""
132
  FinalOutput = ""
133
 
134
  # Find synonyms and hypernyms of each word in the text
 
139
  synonyms += synset.lemma_names()
140
  hypernyms += [hypernym.name() for hypernym in synset.hypernyms()]
141
  if not synonyms and not hypernyms:
142
+ NoHits += f"{token} | "
 
143
  else:
144
+ FinalOutput += "\n" f"{token}: hypernyms={hypernyms}, synonyms={synonyms} \n"
145
+ NoHits = set(NoHits.split(" | "))
146
+ NoHits = filter_words(NoHits)
147
+ NoHits = "Words to pay special attention to: \n" + str(NoHits)
148
+ return NoHits, FinalOutput
149
 
150
 
151
  def WikiSearch(term):