KwabsHug commited on
Commit
5fa4476
·
1 Parent(s): bc9a5a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -66
app.py CHANGED
@@ -16,6 +16,8 @@ from collections import Counter
16
  from PIL import Image, ImageDraw, ImageFont
17
  import numpy as np
18
 
 
 
19
  nltk.download('maxent_ne_chunker') #Chunker
20
  nltk.download('stopwords') #Stop Words List (Mainly Roman Languages)
21
  nltk.download('words') #200 000+ Alphabetical order list
@@ -32,6 +34,9 @@ nltk.download('opinion_lexicon') #Sentiment words
32
  nltk.download('averaged_perceptron_tagger') #Parts of Speech Tagging
33
 
34
  spacy.cli.download("en_core_web_sm")
 
 
 
35
 
36
  nlp = spacy.load('en_core_web_sm')
37
  translator = Translator()
@@ -184,8 +189,10 @@ def merge_lines(roman_file, w4w_file, full_mean_file, macaronic_file):
184
 
185
  return "\n".join(merged_lines)
186
 
187
- def TTSforListeningPractice(text):
188
- language = "en"
 
 
189
  speech = gTTS(text=text, lang=language, slow="False")
190
  speech.save("CurrentTTSFile.mp3")
191
  #file = BytesIO()
@@ -281,14 +288,23 @@ def split_verbs_nouns(text):
281
 
282
  return pos_string_text, verbs_nouns_text, other_words_text
283
 
284
- def split_srt_file(text): #file_path):
 
 
285
  # Open the SRT file and read its contents
286
  #with open(file_path, 'r') as f:
287
  # srt_contents = f.read()
 
 
 
 
 
 
288
  srt_contents = text
289
 
290
  # Split the SRT file by timestamp
291
  srt_sections = srt_contents.split('\n\n')
 
292
 
293
  # Loop through each section of the SRT file
294
  for i in range(len(srt_sections)):
@@ -296,15 +312,21 @@ def split_srt_file(text): #file_path):
296
  section_lines = srt_sections[i].split('\n')
297
  timestamp = section_lines[1]
298
  subtitle_text = ' | '.join(section_lines[2:])
 
 
299
 
300
  # Replace spaces in the subtitle text with " | "
301
- subtitle_text = subtitle_text.replace(' ', ' | ')
 
 
 
302
 
303
  # Reconstruct the section with the updated subtitle text
304
  srt_sections[i] = f"{section_lines[0]}\n{timestamp}\n{subtitle_text[3:]}"
 
305
 
306
  # Join the SRT sections back together into a single string
307
- return '\n\n'.join(srt_sections)
308
 
309
  def find_string_positions(s, string):
310
  positions = []
@@ -318,7 +340,8 @@ def find_string_positions(s, string):
318
  return positions
319
 
320
  def splittext(string):
321
- split_positions = find_string_positions(string, " --> ")
 
322
  split_strings = []
323
  prepos = 0
324
  for pos in split_positions:
@@ -329,7 +352,7 @@ def splittext(string):
329
  FinalOutput = ""
330
  stoutput = ""
331
  linenumber = 1
332
- print(linenumber)
333
  for item in split_strings[1:]:
334
  stoutput = item[0:29] + "\n" + item[30:]
335
  stspaces = find_string_positions(stoutput, " ")
@@ -388,7 +411,7 @@ def text_to_links(text): #TextCompFormat
388
  html = ""
389
  for line in lines:
390
  if line.startswith("http"):
391
- html += f'<a href="{line}">{line}</a><br> \n'
392
  else:
393
  html += line + "Not a link <br> \n"
394
  return html
@@ -450,40 +473,31 @@ groupinput_text = gr.inputs.Textbox(lines=2, label="Enter a list of words")
450
  groupoutput_text = gr.outputs.Textbox(label="Grouped words")
451
 
452
  with gr.Blocks() as lliface:
453
- gr.HTML("<p>Audio = best long form attention mechanism AS it is ANTICIPATION (Awareness of something before it happens like knowing song Lyrics) FOCUSED - Attention (Focused Repitition) + Exposure (Random Repitition) </p>")
 
454
  with gr.Tab("Welcome"):
455
- gr.HTML("""<h1> Spaces Test - Still Undercontruction </h1> <p> You only learn when you convert things you dont know to known --> Normally Repetition is the only reliable method for everybody </p>
456
- <p> Knowledge is a Language but productive knowledge is find replace as well </p> <p>LingQ is good option for per word state management</p> <p> Arrows app json creator for easy knowledge graphing and spacy POS graph? </p>
457
- <p> Vocab = Glossary + all non text wall(lists, diagrams, etc.)</p>
458
- <p> https://huggingface.co/spaces/vumichien/whisper-speaker-diarization<br></p>
459
- <p> In Language the goal is bigger vocab --> Knowledge equivalent = question answer pairs but to get to those you need related information pairs</p>
460
- <p> ChatGPT Turns Learning into a read only what you dont know ask only what you dont know feedback loop --> All you have to do is keep track of what prompts you have asked in the past</p>
461
- <p> Spell multiple words simultaneously for simultaneous access </p>
462
- """)
 
463
  with gr.Tab("Unique word ID - use in Infranodus"):
464
- gr.Interface(fn=unique_word_count, inputs="text", outputs="text", title="Wordcounter")
465
- gr.Interface(fn=SepHypandSynExpansion, inputs="text", outputs=["text", "text"], title="Word suggestions - Analyse the unique words in infranodus")
466
- gr.Interface(fn=WikiSearch, inputs="text", outputs="text", title="Unique word suggestions(wiki articles)")
467
  with gr.Tab("Automating related information linking"):
468
  gr.HTML("Questions - Tacking and suggesting questions to ask = new education")
469
- with gr.Tab("Timing Practice - Repitition"):
470
- gr.HTML("<p>Run from it, Dread it, Repitition is inevitable - Thanos</p> <p>Next Milestone is Turning this interface handsfree</p>")
471
- with gr.Tab("Gradio Version"):
472
- gr.Interface(fn=group_words, inputs=groupinput_text, outputs=groupoutput_text, title="Word Grouping and Rotation", description="Group a list of words into sets of 10 and rotate them every 60 seconds.") #.queue()
473
- with gr.Tab("HTML Version"):
474
- gr.HTML("""<iframe height="1200" style="width: 100%;" scrolling="no" title="Memorisation Aid" src="https://codepen.io/kwabs22/embed/preview/GRXKQgj?default-tab=result&editable=true" frameborder="no" loading="lazy" allowtransparency="true" allowfullscreen="true">
475
- See the Pen <a href="https://codepen.io/kwabs22/pen/GRXKQgj">
476
- Memorisation Aid</a> by kwabs22 (<a href="https://codepen.io/kwabs22">@kwabs22</a>)
477
- on <a href="https://codepen.io">CodePen</a>.
478
- </iframe>""")
479
- with gr.Tab("Beginner - Listening and Reading"):
480
  with gr.Tab("Listening - Songs - Chorus"):
481
  gr.HTML("Anticipation of the item to remember is how you learn lyrics that is why songs are easy as if you heard it 10 times already your capacity to anticipate the words is great <br><br> This is where TTS helps as you are ignoring all words except the words just before the actual <hr>")
482
  gr.HTML("<p>Fastest way to learn words = is to have your own sound reference --> probably why babies learn fast as they make random noise</p> <p>If you know the flow of the song you can remember the spelling easier</p><p>Essentially if the sounds are repeated or long notes they are easy to remember</p>")
483
- gr.HTML("""<hr><a href="https://translate.google.com/?hl=en&tab=TT"> --Google Translate-- </a><br>""")
484
  gr.Interface(fn=AutoChorusInvestigator, inputs="text", outputs="text", description="Paste Full Lyrics to try find only chorus lines")
485
  gr.Interface(fn=AutoChorusPerWordScheduler, inputs="text", outputs="text", description="Create order of repitition for tts practice")
486
- gr.Interface(fn=TTSforListeningPractice, inputs="text", outputs="file", title="Placeholder - paste chorus here and use TTS or make notes to save here")
487
  with gr.Tab("Reading - Caption images (SD/Dalle-E)"):
488
  gr.HTML("Predictable to identify the parts of picture being described --> The description moves in one direction from one side of the image to the other side is easiest <hr>")
489
  gr.HTML("Image = instant comprehension like Stable Diffusion --> Audiovisual experience is the most optimal reading experience <br> Manga with summary descriptions for the chapters = Most aligned visual to audio experience")
@@ -492,40 +506,44 @@ with gr.Blocks() as lliface:
492
  gr.Interface(fn=add_text_to_image , inputs=["image", "text"], outputs="image", description="Create Annotated images (Can create using stable diffusion and use the prompt)")
493
  #with gr.Tab("Transcribe - RASMUS Whisper"):
494
  #gr.Interface.load("spaces/RASMUS/Whisper-youtube-crosslingual-subtitles", title="Subtitles")
495
- with gr.Tab("Advanced - LingQ Addons ideas"):
496
- gr.HTML("LingQ Companion Idea - i.e. Full Translation Read along, and eventually Videoplayer watch along like RAMUS whisper space <br><br>Extra functions needed - Persitent Sentence translation, UNWFWO, POS tagging and Word Count per user of words in their account. Macaronic Text is also another way to practice only the important information")
497
- gr.HTML("""<hr> <p>For Transcripts to any video on youtube use the link below ⬇️</p> <a href="https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles">https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles</a>""")
498
- #gr.HTML("<p>If Space not loaded its because of offline devopment errors please message for edit</p> <hr>")
499
- with gr.Tab("Merged Subtitles"):
500
- gr.HTML("Step 1 - Word for Word Translation Creation in both Directions (Paste Google Translation here)")
501
- gr.Interface(fn=split_srt_file, inputs="text", outputs="text", description="SRT Contents to W4W Split SRT for Google Translate")
502
- gr.HTML("Step 2 - Pronounciation (Roman) to Subtitle Format --> GTranslate returns unformatted string")
503
- gr.Interface(fn=splittext, inputs="text", outputs="text", description="Text for w4w creation in G Translate")
504
- gr.HTML("Step 3 - Merge into one file")
505
- with gr.Row():
506
- RomanFile = gr.File(label="Paste Roman")
507
- W4WFile = gr.File(label="Paste Word 4 Word")
508
- FullMeanFile = gr.File(label="Paste Full Meaning")
509
- MacaronicFile = gr.File(label="Paste Macaronic Text")
510
- SentGramFormula = gr.File(label="Paste Sentence Grammar Formula Text")
511
- with gr.Row():
512
- MergeButton = gr.Button()
513
- with gr.Row():
514
- MergeOutput = gr.TextArea(label="Output")
515
- MergeButton.click(merge_lines, inputs=[RomanFile, W4WFile, FullMeanFile, MacaronicFile], outputs=[MergeOutput])
516
- with gr.Tab("Split video to segments"):
517
- gr.Interface(VideotoSegment, inputs=[spvvideo_file_input, spvsubtitle_file_input], outputs=spvdownload_output)
518
- with gr.Tab("Sentence to Format"):
519
- gr.Interface(fn=split_verbs_nouns , inputs="text", outputs=["text", "text", "text"], title="Comprehension reading and Sentence Format Creator")
 
 
 
520
  gr.Text("Text to Closed Class + Adjectives + Punctuation or Noun Verb + Punctuation ")
521
- with gr.Tab("Spelling and Chunks"):
522
  gr.Text("Merged Spelling Practice Placeholder - Spell multiple words simultaneously for simultaneous access")
523
- gr.HTML("<p> Spelling is the end goal, you already know many letter orders called words so you need leverage them to remember random sequences")
524
- with gr.Tab("Spelling Simplification - Use a dual language list"):
525
- gr.Interface(fn=create_dictionary, inputs="text", outputs="text", title="Sort Text by first two letters")
526
- with gr.Tab("Chunks"):
527
- gr.Interface(fn=FrontRevSentChunk, inputs=[ChunkModeDrop, "checkbox", "text", langdest], outputs="text")
528
- gr.Interface(fn=keep_nouns_verbs, inputs=["text"], outputs="text", title="Noun and Verbs only (Plus punctuation)")
 
529
  with gr.Tab("Knowledge Ideas - Notetaking"):
530
  gr.HTML("""<p>Good knowledge = ability to answer questions --> find Questions you cant answer and look for hidden answer within them </p>
531
  <p>My One Word Theory = We only use more words than needed when we have to or are bored --> Headings exist because title is not sufficient, subheadings exist because headings are not sufficient, Book Text exists because subheadings are not sufficient</p>
@@ -537,4 +555,4 @@ with gr.Blocks() as lliface:
537
  with gr.Tab("Automated Reading Assitant"):
538
  gr.HTML("Tree and Branches approach to learning = familiarity with keywords/headings/summaries before reading the whole text <hr> Productivity/Work revolves around repitition which can be found looking for plurals and grouping terms eg. Headings and Hyper/Hyponyms Analysis")
539
 
540
- lliface.queue().launch()
 
16
  from PIL import Image, ImageDraw, ImageFont
17
  import numpy as np
18
 
19
+
20
+ #Uncomment these for Huggingface
21
  nltk.download('maxent_ne_chunker') #Chunker
22
  nltk.download('stopwords') #Stop Words List (Mainly Roman Languages)
23
  nltk.download('words') #200 000+ Alphabetical order list
 
34
  nltk.download('averaged_perceptron_tagger') #Parts of Speech Tagging
35
 
36
  spacy.cli.download("en_core_web_sm")
37
+ spacy.cli.download('ko_core_news_sm')
38
+ spacy.cli.download('ja_core_news_sm')
39
+ spacy.cli.download('zh_core_web_sm')
40
 
41
  nlp = spacy.load('en_core_web_sm')
42
  translator = Translator()
 
189
 
190
  return "\n".join(merged_lines)
191
 
192
+ TTSLangOptions = gr.Dropdown(choices=["en", "ja", "ko", "zh-cn"], value="en", label="choose the language of the srt")
193
+ TTSLangOptions2 = gr.Dropdown(choices=["en", "ja", "ko", "zh-cn"], value="en", label="choose the language of the srt")
194
+
195
+ def TTSforListeningPractice(text, language = "en"):
196
  speech = gTTS(text=text, lang=language, slow="False")
197
  speech.save("CurrentTTSFile.mp3")
198
  #file = BytesIO()
 
288
 
289
  return pos_string_text, verbs_nouns_text, other_words_text
290
 
291
+ SRTLangOptions = gr.Dropdown(choices=["en", "ja", "ko", "zh-cn"], value="en", label="choose the language of the srt")
292
+
293
+ def split_srt_file(text, lang): #file_path):
294
  # Open the SRT file and read its contents
295
  #with open(file_path, 'r') as f:
296
  # srt_contents = f.read()
297
+
298
+ if lang == "en": nlp = spacy.load('en_core_web_sm')
299
+ if lang == "ja": nlp = spacy.load('ja_core_news_sm')
300
+ if lang == "ko": nlp = spacy.load('ko_core_news_sm')
301
+ if lang == "zn-cn": nlp = spacy.load('zn_core_web_sm')
302
+
303
  srt_contents = text
304
 
305
  # Split the SRT file by timestamp
306
  srt_sections = srt_contents.split('\n\n')
307
+ srt_sections_POSversion = []
308
 
309
  # Loop through each section of the SRT file
310
  for i in range(len(srt_sections)):
 
312
  section_lines = srt_sections[i].split('\n')
313
  timestamp = section_lines[1]
314
  subtitle_text = ' | '.join(section_lines[2:])
315
+ sub_split_line = nlp(subtitle_text)
316
+ subtitle_textPOSversion = ""
317
 
318
  # Replace spaces in the subtitle text with " | "
319
+ #subtitle_text = subtitle_text.replace(' ', ' | ')
320
+ for token in sub_split_line:
321
+ subtitle_text += token.text + " | "
322
+ subtitle_textPOSversion += token.pos_ + " | "
323
 
324
  # Reconstruct the section with the updated subtitle text
325
  srt_sections[i] = f"{section_lines[0]}\n{timestamp}\n{subtitle_text[3:]}"
326
+ srt_sections_POSversion.append(f"{section_lines[0]}\n{timestamp}\n{subtitle_textPOSversion[3:]}\n\n")
327
 
328
  # Join the SRT sections back together into a single string
329
+ return '\n\n'.join(srt_sections), ''.join(srt_sections_POSversion)
330
 
331
  def find_string_positions(s, string):
332
  positions = []
 
340
  return positions
341
 
342
  def splittext(string):
343
+ string_no_formaterror = string.replace(" -- > ", " --> ")
344
+ split_positions = find_string_positions(string_no_formaterror, " --> ")
345
  split_strings = []
346
  prepos = 0
347
  for pos in split_positions:
 
352
  FinalOutput = ""
353
  stoutput = ""
354
  linenumber = 1
355
+ #print(linenumber)
356
  for item in split_strings[1:]:
357
  stoutput = item[0:29] + "\n" + item[30:]
358
  stspaces = find_string_positions(stoutput, " ")
 
411
  html = ""
412
  for line in lines:
413
  if line.startswith("http"):
414
+ html += f"<a href='{line}'>{line}</a><br> \n"
415
  else:
416
  html += line + "Not a link <br> \n"
417
  return html
 
473
  groupoutput_text = gr.outputs.Textbox(label="Grouped words")
474
 
475
  with gr.Blocks() as lliface:
476
+ gr.HTML("<p> Target 1: Dual audio at word Level while using repitition to train random recall --> Word level Time <br> Target 2: Video --> Split by sentence --> each word repeated (60) + each phrase (10) + each sentence (10) --> TTS file for practice --> State Management/Known word Tracker <hr> The trick is minimum one minute of focus on a new word --> Listening is hard because there are new word within seconds and you need repeated focus on each to learn </p> <p>Audio = best long form attention mechanism AS it is ANTICIPATION (Awareness of something before it happens like knowing song Lyrics) FOCUSED - Attention (Focused Repitition) + Exposure (Random Repitition) </p>")
477
+ gr.HTML("""<hr> <a href="https://translate.google.com/?hl=en&tab=TT"> -- Google Translate -- </a> | <a href='https://huggingface.co/spaces/damo-vilab/modelscope-text-to-video-synthesis'> -- Modelscope Text to Video -- </a> | <a href='https://huggingface.co/spaces/stabilityai/stable-diffusion'> -- stable-diffusion 2 -- </a> | <a href='https://huggingface.co/spaces/stabilityai/stable-diffusion-1'> -- stable-diffusion 1 -- </a>""")
478
  with gr.Tab("Welcome"):
479
+ gr.HTML("""<p>Spaces Test - Still Undercontruction | Knowledge is a Language but productive knowledge is find replace as well | LingQ is good option for per word state management</p> <p> Arrows app json creator for easy knowledge graphing and spacy POS graph? --> Questions? -->
480
+ <p> ChatGPT Turns Learning into a read only what you dont know ask only what you dont know feedback loop --> All you have to do is keep track of what prompts you have asked in the past</p> """)
481
+ gr.HTML("Timing Practice - Repitition <hr> <p>Run from it, Dread it, Repitition is inevitable - Thanos --> Next Milestone is Turning this interface handsfree</p>")
482
+ gr.Interface(fn=group_words, inputs=groupinput_text, outputs=groupoutput_text, description="Word Grouping and Rotation - Group a list of words into sets of 10 and rotate them every 60 seconds.") #.queue()
483
+ gr.HTML("""HTML Version <hr> <iframe height="1200" style="width: 100%;" scrolling="no" title="Memorisation Aid" src="https://codepen.io/kwabs22/embed/preview/GRXKQgj?default-tab=result&editable=true" frameborder="no" loading="lazy" allowtransparency="true" allowfullscreen="true">
484
+ See the Pen <a href="https://codepen.io/kwabs22/pen/GRXKQgj"> Memorisation Aid</a> by kwabs22 (<a href="https://codepen.io/kwabs22">@kwabs22</a>) on <a href="https://codepen.io">CodePen</a>. </iframe>""")
485
+ with gr.Tab("Unknown Tracker"):
486
+ gr.HTML("Repitition of things you know is a waste of time when theres stuff you dont know <p> In Language the goal is bigger vocab --> Knowledge equivalent = question answer pairs but to get to those you need related information pairs</p> <p> Vocab = Glossary + all non text wall(lists, diagrams, etc.)</p>")
487
+ gr.Textbox("Placeholder for a function that creates a set list and can takes a list for known words and auto find replaces the stuff you know out of the content")
488
  with gr.Tab("Unique word ID - use in Infranodus"):
489
+ gr.Interface(fn=unique_word_count, inputs="text", outputs="text", description="Wordcounter")
490
+ gr.Interface(fn=SepHypandSynExpansion, inputs="text", outputs=["text", "text"], description="Word suggestions - Analyse the unique words in infranodus")
491
+ gr.Interface(fn=WikiSearch, inputs="text", outputs="text", description="Unique word suggestions(wiki articles)")
492
  with gr.Tab("Automating related information linking"):
493
  gr.HTML("Questions - Tacking and suggesting questions to ask = new education")
494
+ with gr.Tab("Beginner - Listen + Read"):
 
 
 
 
 
 
 
 
 
 
495
  with gr.Tab("Listening - Songs - Chorus"):
496
  gr.HTML("Anticipation of the item to remember is how you learn lyrics that is why songs are easy as if you heard it 10 times already your capacity to anticipate the words is great <br><br> This is where TTS helps as you are ignoring all words except the words just before the actual <hr>")
497
  gr.HTML("<p>Fastest way to learn words = is to have your own sound reference --> probably why babies learn fast as they make random noise</p> <p>If you know the flow of the song you can remember the spelling easier</p><p>Essentially if the sounds are repeated or long notes they are easy to remember</p>")
 
498
  gr.Interface(fn=AutoChorusInvestigator, inputs="text", outputs="text", description="Paste Full Lyrics to try find only chorus lines")
499
  gr.Interface(fn=AutoChorusPerWordScheduler, inputs="text", outputs="text", description="Create order of repitition for tts practice")
500
+ gr.Interface(fn=TTSforListeningPractice, inputs=["text", TTSLangOptions], outputs="audio", description="Placeholder - paste chorus here and use TTS or make notes to save here")
501
  with gr.Tab("Reading - Caption images (SD/Dalle-E)"):
502
  gr.HTML("Predictable to identify the parts of picture being described --> The description moves in one direction from one side of the image to the other side is easiest <hr>")
503
  gr.HTML("Image = instant comprehension like Stable Diffusion --> Audiovisual experience is the most optimal reading experience <br> Manga with summary descriptions for the chapters = Most aligned visual to audio experience")
 
506
  gr.Interface(fn=add_text_to_image , inputs=["image", "text"], outputs="image", description="Create Annotated images (Can create using stable diffusion and use the prompt)")
507
  #with gr.Tab("Transcribe - RASMUS Whisper"):
508
  #gr.Interface.load("spaces/RASMUS/Whisper-youtube-crosslingual-subtitles", title="Subtitles")
509
+ with gr.Tab("Advanced - LingQ Addon Ideas"):
510
+ with gr.Tab("Audio - Only English thoughts as practice"):
511
+ gr.HTML("For Audio Most productive is real time recall of native (where your full reasoning ability will always be) <br><hr> Find Replace new lines of the foreign text with full stops or | to get per word translation")
512
+ gr.Interface(fn=TTSforListeningPractice, inputs=["text", TTSLangOptions2], outputs="audio", description="Paste only english words in foreign order and then keep removing the words from this to practice as effectively")
513
+ with gr.Tab("Visual - Multiline Custom Video Subtitles"):
514
+ gr.HTML("LingQ Companion Idea - i.e. Full Translation Read along, and eventually Videoplayer watch along like RAMUS whisper space <br><br>Extra functions needed - Persitent Sentence translation, UNWFWO, POS tagging and Word Count per user of words in their account. Macaronic Text is also another way to practice only the important information")
515
+ gr.HTML("""<hr> <p>For Transcripts to any video on youtube use the link below ⬇️</p> <a href="https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles">https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles</a> | <a href="https://huggingface.co/spaces/vumichien/whisper-speaker-diarization">https://huggingface.co/spaces/vumichien/whisper-speaker-diarization</a>""")
516
+ #gr.HTML("<p>If Space not loaded its because of offline devopment errors please message for edit</p> <hr>")
517
+ with gr.Tab("Merged Subtitles"):
518
+ gr.HTML("Step 1 - Word for Word Translation Creation in both Directions (Paste Google Translation here)")
519
+ gr.Interface(fn=split_srt_file, inputs=["text", SRTLangOptions] , outputs=["text", "text"], description="SRT Contents to W4W Split SRT for Google Translate")
520
+ gr.HTML("Step 2 - Pronounciation (Roman) to Subtitle Format --> GTranslate returns unformatted string")
521
+ gr.Interface(fn=splittext, inputs="text", outputs="text", description="Text for w4w creation in G Translate")
522
+ gr.HTML("Step 3 - Merge into one file")
523
+ with gr.Row():
524
+ RomanFile = gr.File(label="Paste Roman")
525
+ W4WFile = gr.File(label="Paste Word 4 Word")
526
+ FullMeanFile = gr.File(label="Paste Full Meaning")
527
+ MacaronicFile = gr.File(label="Paste Macaronic Text")
528
+ SentGramFormula = gr.File(label="Paste Sentence Grammar Formula Text")
529
+ with gr.Row():
530
+ MergeButton = gr.Button()
531
+ with gr.Row():
532
+ MergeOutput = gr.TextArea(label="Output")
533
+ MergeButton.click(merge_lines, inputs=[RomanFile, W4WFile, FullMeanFile, MacaronicFile], outputs=[MergeOutput])
534
+ with gr.Tab("Split video to segments"):
535
+ gr.HTML("<a href='https://www.vlchelp.com/automated-screenshots-interval/'>How to make screenshot in vlc - https://www.vlchelp.com/automated-screenshots-interval/</a><br>")
536
+ gr.Interface(VideotoSegment, inputs=[spvvideo_file_input, spvsubtitle_file_input], outputs=spvdownload_output)
537
  gr.Text("Text to Closed Class + Adjectives + Punctuation or Noun Verb + Punctuation ")
538
+ with gr.Tab("Spelling + Chunks"):
539
  gr.Text("Merged Spelling Practice Placeholder - Spell multiple words simultaneously for simultaneous access")
540
+ gr.HTML("<p> Spell multiple words simultaneously for simultaneous access </p> <p> Spelling Simplification - Use a dual language list? | Spelling is the end goal, you already know many letter orders called words so you need leverage them to remember random sequences")
541
+ gr.Interface(fn=create_dictionary, inputs="text", outputs="text", title="Sort Text by first two letters")
542
+ gr.Interface(fn=keep_nouns_verbs, inputs=["text"], outputs="text", description="Noun and Verbs only (Plus punctuation)")
543
+ gr.Interface(fn=FrontRevSentChunk, inputs=[ChunkModeDrop, "checkbox", "text", langdest], outputs="text", description="Chunks creator")
544
+ with gr.Tab("Thinking Practice"):
545
+ with gr.Tab("Sentence to Format"):
546
+ gr.Interface(fn=split_verbs_nouns , inputs="text", outputs=["text", "text", "text"], description="Comprehension reading and Sentence Format Creator")
547
  with gr.Tab("Knowledge Ideas - Notetaking"):
548
  gr.HTML("""<p>Good knowledge = ability to answer questions --> find Questions you cant answer and look for hidden answer within them </p>
549
  <p>My One Word Theory = We only use more words than needed when we have to or are bored --> Headings exist because title is not sufficient, subheadings exist because headings are not sufficient, Book Text exists because subheadings are not sufficient</p>
 
555
  with gr.Tab("Automated Reading Assitant"):
556
  gr.HTML("Tree and Branches approach to learning = familiarity with keywords/headings/summaries before reading the whole text <hr> Productivity/Work revolves around repitition which can be found looking for plurals and grouping terms eg. Headings and Hyper/Hyponyms Analysis")
557
 
558
+ lliface.queue().launch() #(inbrowser="true")