KwabenaMufasa commited on
Commit
81442b0
1 Parent(s): e667323

docker files

Browse files
Files changed (3) hide show
  1. app.py +55 -0
  2. dockerfile.txt +26 -0
  3. requirements.txt +14 -0
app.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import the required Libraries
2
+ import gradio as gr
3
+ import numpy as np
4
+ import pandas as pd
5
+ import pickle
6
+ import transformers
7
+ from transformers import AutoTokenizer, AutoConfig,AutoModelForSequenceClassification,TFAutoModelForSequenceClassification, pipeline
8
+ from scipy.special import softmax
9
+
10
+ # Requirements
11
+ model_path = "KwabenaMufasa/Finetuned-Distilbert-base-model"
12
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
13
+ config = AutoConfig.from_pretrained(model_path)
14
+ model = AutoModelForSequenceClassification.from_pretrained(model_path)
15
+
16
+ #Preprocess text
17
+ def preprocess(text):
18
+ new_text = []
19
+ for t in text.split(" "):
20
+ t = "@user" if t.startswith("@") and len(t) > 1 else t
21
+ t = "http" if t.startswith("http") else t
22
+ new_text.append(t)
23
+ return " ".join(new_text)
24
+
25
+ #Process the input and return prediction
26
+ def sentiment_analysis(text):
27
+ text = preprocess(text)
28
+
29
+ encoded_input = tokenizer(text, return_tensors = "pt") # for PyTorch-based models
30
+ output = model(**encoded_input)
31
+ scores_ = output[0][0].detach().numpy()
32
+ scores_ = softmax(scores_)
33
+
34
+ # Format output dict of scores
35
+ labels = ["Negative", "Neutral", "Positive"]
36
+ scores = {l:float(s) for (l,s) in zip(labels, scores_) }
37
+
38
+ return scores
39
+
40
+ #Gradio app interface
41
+ app = gr.Interface(fn = sentiment_analysis,
42
+ inputs = gr.Textbox("Write your text or tweet here"),
43
+ outputs = "label",
44
+ title = "Twitter Sentiment Analyzer App",
45
+ description = "Vaccinate or Do Not Vaccinate",
46
+ interpretation = "default",
47
+ examples = [["Being vaccinated is actually awesome :)"]]
48
+ )
49
+
50
+
51
+
52
+ app.launch(server_name = "0.0.0.0.", server_port = 7860)
53
+
54
+ if __name__=="__app__":
55
+ run()
dockerfile.txt ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+
3
+ WORKDIR /code
4
+
5
+ COPY ./requirements.txt /code/requirements.txt
6
+
7
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
8
+
9
+ # Set up a new user named "user" with user ID 1000
10
+ RUN useradd -m -u 1000 user
11
+ # Switch to the "user" user
12
+ USER user
13
+ # Set home to the user's home directory
14
+ ENV HOME=/home/user \
15
+ PATH=/home/user/.local/bin:$PATH
16
+
17
+ # Set the working directory to the user's home directory
18
+ WORKDIR $HOME/app
19
+
20
+ # Copy the current directory contents into the container at $HOME/app setting the owner to the user
21
+ COPY --chown=user . $HOME/app
22
+
23
+
24
+
25
+ #COPY . .
26
+ CMD ["python","app.py"]
requirements.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pandas
2
+ scikit-learn
3
+ seaborn
4
+ fastai
5
+ transformers
6
+ simpletransformers
7
+ nltk
8
+ spacy
9
+ gensim
10
+ plotly
11
+ notebook
12
+ jupyter
13
+ ipywidgets
14
+ gradio