KvrParaskevi
commited on
Update chatbot.py
Browse files- chatbot.py +12 -13
chatbot.py
CHANGED
@@ -10,8 +10,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfi
|
|
10 |
my_model_id = os.getenv('MODEL_REPO_ID', 'Default Value')
|
11 |
token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
12 |
|
13 |
-
template = """
|
14 |
-
You are an AI having conversation with a human. Below is an instruction that describes a task.
|
15 |
Write a response that appropriately completes the request.
|
16 |
Reply with the most helpful and logic answer. During the conversation you need to ask the user
|
17 |
the following questions to complete the hotel booking task.
|
@@ -21,13 +20,16 @@ the following questions to complete the hotel booking task.
|
|
21 |
4) What is your name, your email address and phone number?
|
22 |
Make sure you receive a logical answer from the user from every question to complete the hotel
|
23 |
booking process.
|
24 |
-
<</SYS>>
|
25 |
|
26 |
-
|
|
|
|
|
27 |
{history}
|
28 |
|
|
|
|
|
29 |
Human: {input}
|
30 |
-
AI:
|
31 |
|
32 |
#@st.cache_resource
|
33 |
def load_model():
|
@@ -64,22 +66,19 @@ llm = load_pipeline()
|
|
64 |
|
65 |
def demo_miny_memory():
|
66 |
#prompt = ChatPromptTemplate.from_template(template)
|
67 |
-
memory = ConversationBufferMemory(
|
68 |
return memory
|
69 |
|
70 |
def demo_chain(input_text,history):
|
71 |
-
PROMPT = ChatPromptTemplate.from_template(template)
|
72 |
-
|
73 |
conversation = ConversationChain(
|
74 |
-
prompt=PROMPT,
|
75 |
llm=llm,
|
|
|
76 |
#verbose=langchain.globals.get_verbose(),
|
77 |
verbose=True,
|
78 |
memory=demo_miny_memory()
|
79 |
)
|
80 |
|
81 |
-
chat_reply = conversation.
|
82 |
-
"input" : input_text,
|
83 |
-
"history" : history
|
84 |
-
}, return_only_outputs=True)
|
85 |
return chat_reply['response'] #.split('AI:')[-1]
|
|
|
10 |
my_model_id = os.getenv('MODEL_REPO_ID', 'Default Value')
|
11 |
token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
12 |
|
13 |
+
template = """You are an AI having conversation with a human. Below is an instruction that describes a task.
|
|
|
14 |
Write a response that appropriately completes the request.
|
15 |
Reply with the most helpful and logic answer. During the conversation you need to ask the user
|
16 |
the following questions to complete the hotel booking task.
|
|
|
20 |
4) What is your name, your email address and phone number?
|
21 |
Make sure you receive a logical answer from the user from every question to complete the hotel
|
22 |
booking process.
|
|
|
23 |
|
24 |
+
Relevant Information:
|
25 |
+
|
26 |
+
|
27 |
{history}
|
28 |
|
29 |
+
Current Conversation:
|
30 |
+
|
31 |
Human: {input}
|
32 |
+
AI:"""
|
33 |
|
34 |
#@st.cache_resource
|
35 |
def load_model():
|
|
|
66 |
|
67 |
def demo_miny_memory():
|
68 |
#prompt = ChatPromptTemplate.from_template(template)
|
69 |
+
memory = ConversationBufferMemory(llm = llm)
|
70 |
return memory
|
71 |
|
72 |
def demo_chain(input_text,history):
|
73 |
+
#PROMPT = ChatPromptTemplate.from_template(template)
|
74 |
+
PROMPT = PromptTemplate(template=template, input_variables=["history", "input"])
|
75 |
conversation = ConversationChain(
|
|
|
76 |
llm=llm,
|
77 |
+
prompt=PROMPT,
|
78 |
#verbose=langchain.globals.get_verbose(),
|
79 |
verbose=True,
|
80 |
memory=demo_miny_memory()
|
81 |
)
|
82 |
|
83 |
+
chat_reply = conversation.predict(input=input_text, return_only_outputs=True)
|
|
|
|
|
|
|
84 |
return chat_reply['response'] #.split('AI:')[-1]
|