Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
from diffusers import DiffusionPipeline | |
import time | |
# Load model and scheduler | |
ldm = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256") | |
def generate_image(prompt, negative_prompt="Low quality", width=512, height=512): | |
# Run pipeline in inference (sample random noise and denoise) | |
start_time = time.time() | |
images = ldm([prompt], num_inference_steps=50, eta=0.3, guidance_scale=6, negative_prompts=[negative_prompt]).images | |
# Resize image to desired width and height | |
resized_images = [image.resize((int(width), int(height))) for image in images] | |
# Save images | |
for idx, image in enumerate(resized_images): | |
image.save(f"squirrel-{idx}.png") | |
end_time = time.time() | |
elapsed_time = round(end_time - start_time, 2) | |
return resized_images[0] | |
# Define the interface | |
iface = gr.Interface( | |
fn=generate_image, | |
inputs=["text", "text", "number", "number"], | |
outputs=gr.outputs.Image(type="pil", label="Generated Image"), | |
layout="vertical", | |
title="Image Generation", | |
description="Generate images based on prompts", | |
article="For more information, visit the documentation: [link](https://docs.gradio.app/)", | |
examples=[["A painting of a squirrel eating a burger", "Low quality", 512, 512]] | |
) | |
# Launch the interface | |
iface.launch() | |