File size: 4,060 Bytes
d18f074
 
1d6cd7b
 
 
 
 
 
 
d18f074
1d6cd7b
 
 
 
 
 
2dad019
d18f074
1d6cd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d18f074
1d6cd7b
 
 
 
b5d38bf
1d6cd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5d38bf
1d6cd7b
 
 
b5d38bf
1d6cd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d18f074
1d6cd7b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import gradio as gr
import torch
import os
from glob import glob
from pathlib import Path
from typing import Optional

from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
from PIL import Image

import uuid
import random
from huggingface_hub import hf_hub_download

pipe = StableVideoDiffusionPipeline.from_pretrained(
    "vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
)
pipe.to("cuda")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

max_64_bit_int = 2**63 - 1

def sample(
    image: Image,
    seed: Optional[int] = 42,
    randomize_seed: bool = True,
    motion_bucket_id: int = 127,
    fps_id: int = 6,
    version: str = "svd_xt",
    cond_aug: float = 0.02,
    decoding_t: int = 3,  # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
    device: str = "cuda",
    output_folder: str = "outputs",
):
    if image.mode == "RGBA":
        image = image.convert("RGB")
        
    if(randomize_seed):
        seed = random.randint(0, max_64_bit_int)
    generator = torch.manual_seed(seed)
    
    os.makedirs(output_folder, exist_ok=True)
    base_count = len(glob(os.path.join(output_folder, "*.mp4")))
    video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")

    frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
    export_to_video(frames, video_path, fps=fps_id)
    torch.manual_seed(seed)
    
    return video_path, seed

def resize_image(image, output_size=(1024, 576)):
    # Calculate aspect ratios
    target_aspect = output_size[0] / output_size[1]  # Aspect ratio of the desired size
    image_aspect = image.width / image.height  # Aspect ratio of the original image

    # Resize then crop if the original image is larger
    if image_aspect > target_aspect:
        # Resize the image to match the target height, maintaining aspect ratio
        new_height = output_size[1]
        new_width = int(new_height * image_aspect)
        resized_image = image.resize((new_width, new_height), Image.LANCZOS)
        # Calculate coordinates for cropping
        left = (new_width - output_size[0]) / 2
        top = 0
        right = (new_width + output_size[0]) / 2
        bottom = output_size[1]
    else:
        # Resize the image to match the target width, maintaining aspect ratio
        new_width = output_size[0]
        new_height = int(new_width / image_aspect)
        resized_image = image.resize((new_width, new_height), Image.LANCZOS)
        # Calculate coordinates for cropping
        left = 0
        top = (new_height - output_size[1]) / 2
        right = output_size[0]
        bottom = (new_height + output_size[1]) / 2

    # Crop the image
    cropped_image = resized_image.crop((left, top, right, bottom))
    return cropped_image

with gr.Blocks() as demo:
  gr.Markdown('''# Stable Video Diffusion
  ''')
  with gr.Row():
    with gr.Column():
        image = gr.Image(label="Upload your image", type="pil")
        generate_btn = gr.Button("Generate")
    video = gr.Video()
  with gr.Accordion("Advanced options", open=False):
      seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
      randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
      motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
      fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
      
  image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
  generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")

if __name__ == "__main__":
    demo.queue(max_size=20, api_open=False)
    demo.launch(share=True, show_api=False)