Spaces:
Runtime error
Runtime error
File size: 12,134 Bytes
d18f074 1d6cd7b e0f9e9c 1d6cd7b e0f9e9c 1d6cd7b e0f9e9c d18f074 1d6cd7b e0f9e9c 2dad019 d18f074 e0f9e9c 1d6cd7b e0f9e9c 1d6cd7b e0f9e9c 1d6cd7b e0f9e9c 1d6cd7b e0f9e9c 1d6cd7b e0f9e9c 1d6cd7b e0f9e9c 1d6cd7b e0f9e9c 1d6cd7b e0f9e9c d18f074 1d6cd7b e0f9e9c 1d6cd7b b5d38bf e0f9e9c 1d6cd7b b5d38bf 1d6cd7b e0f9e9c b5d38bf 1d6cd7b e0f9e9c 1d6cd7b 7fe8f7f e0f9e9c 7fe8f7f e0f9e9c 7fe8f7f e0f9e9c 1d6cd7b e0f9e9c d18f074 1d6cd7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import gradio as gr
import torch
import os
import random
import time
import math
import spaces
from glob import glob
from pathlib import Path
from typing import Optional, List, Union
from diffusers import StableVideoDiffusionPipeline, StableVideoDragNUWAPipeline
from diffusers.utils import export_to_video, export_to_gif
from PIL import Image
fps25Pipe = StableVideoDiffusionPipeline.from_pretrained(
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
)
fps25Pipe.to("cuda")
fps14Pipe = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16"
)
fps14Pipe.to("cuda")
dragnuwaPipe = StableVideoDragNUWAPipeline.from_pretrained(
"a-r-r-o-w/dragnuwa-svd", torch_dtype=torch.float16, variant="fp16", low_cpu_mem_usage=False, device_map=None
)
dragnuwaPipe.to("cuda")
max_64_bit_int = 2**63 - 1
def animate(
image: Image,
seed: Optional[int] = 42,
randomize_seed: bool = True,
motion_bucket_id: int = 127,
fps_id: int = 25,
noise_aug_strength: float = 0.1,
decoding_t: int = 3,
video_format: str = "mp4",
frame_format: str = "webp",
version: str = "auto",
width: int = 1024,
height: int = 576,
motion_control: bool = False,
num_inference_steps: int = 25
):
start = time.time()
if image is None:
raise gr.Error("Please provide an image to animate.")
output_folder = "outputs"
image_data = resize_image(image, output_size=(width, height))
if image_data.mode == "RGBA":
image_data = image_data.convert("RGB")
if motion_control:
image_data = [image_data] * 3
if randomize_seed:
seed = random.randint(0, max_64_bit_int)
if version == "auto":
if 14 < fps_id:
version = "svdxt"
else:
version = "svd"
frames = animate_on_gpu(
image_data,
seed,
motion_bucket_id,
fps_id,
noise_aug_strength,
decoding_t,
version,
width,
height,
num_inference_steps
)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*." + video_format)))
result_path = os.path.join(output_folder, f"{base_count:06d}." + video_format)
if video_format == "gif":
video_path = None
gif_path = result_path
export_to_gif(image=frames, output_gif_path=gif_path, fps=fps_id)
else:
video_path = result_path
gif_path = None
export_to_video(frames, video_path, fps=fps_id)
end = time.time()
secondes = int(end - start)
minutes = math.floor(secondes / 60)
secondes = secondes - (minutes * 60)
hours = math.floor(minutes / 60)
minutes = minutes - (hours * 60)
information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
"Wait 2 min before a new run to avoid quota penalty or use another computer. " + \
"The video has been generated in " + \
((str(hours) + " h, ") if hours != 0 else "") + \
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
str(secondes) + " sec."
return [
# Display for video
gr.update(value = video_path, visible = video_format != "gif"),
# Display for gif
gr.update(value = gif_path, visible = video_format == "gif"),
# Download button
gr.update(label = "πΎ Download animation in *." + video_format + " format", value=result_path, visible=True),
# Frames
gr.update(label = "Generated frames in *." + frame_format + " format", format = frame_format, value = frames, visible = True),
# Used seed
seed,
# Information
gr.update(value = information, visible = True),
# Reset button
gr.update(visible = True)
]
@torch.no_grad()
@spaces.GPU(duration=180)
def animate_on_gpu(
image_data: Union[Image.Image, List[Image.Image]],
seed: Optional[int] = 42,
motion_bucket_id: int = 127,
fps_id: int = 6,
noise_aug_strength: float = 0.1,
decoding_t: int = 3,
version: str = "svdxt",
width: int = 1024,
height: int = 576,
num_inference_steps: int = 25
):
generator = torch.manual_seed(seed)
if version == "dragnuwa":
return dragnuwaPipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
elif version == "svdxt":
return fps25Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
else:
return fps14Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
def resize_image(image, output_size=(1024, 576)):
# Do not touch the image if the size is good
if image.width == output_size[0] and image.height == output_size[1]:
return image
# Calculate aspect ratios
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
image_aspect = image.width / image.height # Aspect ratio of the original image
# Resize if the original image is larger
if image_aspect > target_aspect:
# Resize the image to match the target height, maintaining aspect ratio
new_height = output_size[1]
new_width = int(new_height * image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Calculate coordinates for cropping
left = (new_width - output_size[0]) / 2
top = 0
right = (new_width + output_size[0]) / 2
bottom = output_size[1]
else:
# Resize the image to match the target width, maintaining aspect ratio
new_width = output_size[0]
new_height = int(new_width / image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Calculate coordinates for cropping
left = 0
top = (new_height - output_size[1]) / 2
right = output_size[0]
bottom = (new_height + output_size[1]) / 2
# Crop the image
return resized_image.crop((left, top, right, bottom))
def reset():
return [
None,
random.randint(0, max_64_bit_int),
True,
127,
6,
0.1,
3,
"mp4",
"webp",
"auto",
1024,
576,
False,
25
]
with gr.Blocks() as demo:
gr.HTML("""
<h1><center>Image-to-Video</center></h1>
<big><center>Animate your image into 25 frames of 1024x576 pixels freely, without account, without watermark and download the video</center></big>
<br/>
<p>
This demo is based on <i>Stable Video Diffusion</i> artificial intelligence.
No prompt or camera control is handled here.
To control motions, rather use <i><a href="https://huggingface.co/spaces/TencentARC/MotionCtrl_SVD">MotionCtrl SVD</a></i>.
If you need 128 frames, rather use <i><a href="https://huggingface.co/spaces/modelscope/ExVideo-SVD-128f-v1">ExVideo</a></i>.
</p>
""")
with gr.Row():
with gr.Column():
image = gr.Image(label="Upload your image", type="pil")
with gr.Accordion("Advanced options", open=False):
width = gr.Slider(label="Width", info="Width of the video", value=1024, minimum=256, maximum=1024, step=8)
height = gr.Slider(label="Height", info="Height of the video", value=576, minimum=256, maximum=576, step=8)
motion_control = gr.Checkbox(label="Motion control (experimental)", info="Fix the camera", value=False)
video_format = gr.Radio([["*.mp4", "mp4"], ["*.avi", "avi"], ["*.wmv", "wmv"], ["*.mkv", "mkv"], ["*.mov", "mov"], ["*.gif", "gif"]], label="Video format for result", info="File extention", value="mp4", interactive=True)
frame_format = gr.Radio([["*.webp", "webp"], ["*.png", "png"], ["*.jpeg", "jpeg"], ["*.gif (unanimated)", "gif"], ["*.bmp", "bmp"]], label="Image format for frames", info="File extention", value="webp", interactive=True)
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=25, minimum=5, maximum=30)
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1)
num_inference_steps = gr.Slider(label="Number inference steps", info="More denoising steps usually lead to a higher quality video at the expense of slower inference", value=25, minimum=1, maximum=100, step=1)
decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1)
version = gr.Radio([["Auto", "auto"], ["ππ»ββοΈ SVD (trained on 14 f/s)", "svd"], ["ππ»ββοΈπ¨ SVD-XT (trained on 25 f/s)", "svdxt"], ["DragNUWA (unstable)", "dragnuwa"]], label="Model", info="Trained model", value="auto", interactive=True)
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
generate_btn = gr.Button(value="π Animate", variant="primary")
reset_btn = gr.Button(value="π§Ή Reinit page", variant="stop", elem_id="reset_button", visible = False)
with gr.Column():
video_output = gr.Video(label="Generated video", format="mp4", autoplay=True, show_download_button=False)
gif_output = gr.Image(label="Generated video", format="gif", show_download_button=False, visible=False)
download_button = gr.DownloadButton(label="πΎ Download video", visible=False)
information_msg = gr.HTML(visible=False)
gallery = gr.Gallery(label="Generated frames", visible=False)
generate_btn.click(fn=animate, inputs=[
image,
seed,
randomize_seed,
motion_bucket_id,
fps_id,
noise_aug_strength,
decoding_t,
video_format,
frame_format,
version,
width,
height,
motion_control,
num_inference_steps
], outputs=[
video_output,
gif_output,
download_button,
gallery,
seed,
information_msg,
reset_btn
], api_name="video")
reset_btn.click(fn = reset, inputs = [], outputs = [
image,
seed,
randomize_seed,
motion_bucket_id,
fps_id,
noise_aug_strength,
decoding_t,
video_format,
frame_format,
version,
width,
height,
motion_control,
num_inference_steps
], queue = False, show_progress = False)
gr.Examples(
examples=[
["Examples/Fire.webp", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25],
["Examples/Water.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25],
["Examples/Town.jpeg", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25]
],
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, video_format, frame_format, version, width, height, motion_control, num_inference_steps],
outputs=[video_output, gif_output, download_button, gallery, seed, information_msg, reset_btn],
fn=animate,
run_on_click=True,
cache_examples=False,
)
if __name__ == "__main__":
demo.launch(share=True, show_api=False) |