File size: 12,134 Bytes
d18f074
 
1d6cd7b
e0f9e9c
 
 
 
1d6cd7b
 
e0f9e9c
1d6cd7b
e0f9e9c
 
d18f074
1d6cd7b
e0f9e9c
2dad019
d18f074
e0f9e9c
 
 
 
 
 
 
 
 
 
 
1d6cd7b
 
 
e0f9e9c
1d6cd7b
 
 
 
e0f9e9c
 
 
 
 
 
 
 
 
 
1d6cd7b
e0f9e9c
 
 
 
 
 
 
 
 
 
 
 
1d6cd7b
e0f9e9c
1d6cd7b
e0f9e9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d6cd7b
 
e0f9e9c
 
1d6cd7b
e0f9e9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d6cd7b
e0f9e9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d18f074
1d6cd7b
e0f9e9c
 
 
 
1d6cd7b
 
 
b5d38bf
e0f9e9c
1d6cd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5d38bf
1d6cd7b
e0f9e9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5d38bf
1d6cd7b
e0f9e9c
 
 
 
 
 
 
 
 
 
 
 
1d6cd7b
7fe8f7f
 
 
e0f9e9c
 
 
 
 
 
 
 
 
 
 
7fe8f7f
 
e0f9e9c
 
 
 
7fe8f7f
e0f9e9c
 
 
 
 
1d6cd7b
e0f9e9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d18f074
1d6cd7b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import gradio as gr
import torch
import os
import random
import time
import math
import spaces
from glob import glob
from pathlib import Path
from typing import Optional, List, Union

from diffusers import StableVideoDiffusionPipeline, StableVideoDragNUWAPipeline
from diffusers.utils import export_to_video, export_to_gif
from PIL import Image

fps25Pipe = StableVideoDiffusionPipeline.from_pretrained(
    "vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
)
fps25Pipe.to("cuda")

fps14Pipe = StableVideoDiffusionPipeline.from_pretrained(
    "stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16"
)
fps14Pipe.to("cuda")

dragnuwaPipe = StableVideoDragNUWAPipeline.from_pretrained(
    "a-r-r-o-w/dragnuwa-svd", torch_dtype=torch.float16, variant="fp16", low_cpu_mem_usage=False, device_map=None
)
dragnuwaPipe.to("cuda")

max_64_bit_int = 2**63 - 1

def animate(
    image: Image,
    seed: Optional[int] = 42,
    randomize_seed: bool = True,
    motion_bucket_id: int = 127,
    fps_id: int = 25,
    noise_aug_strength: float = 0.1,
    decoding_t: int = 3,
    video_format: str = "mp4",
    frame_format: str = "webp",
    version: str = "auto",
    width: int = 1024,
    height: int = 576,
    motion_control: bool = False,
    num_inference_steps: int = 25
):
    start = time.time()

    if image is None:
        raise gr.Error("Please provide an image to animate.")

    output_folder = "outputs"
    image_data = resize_image(image, output_size=(width, height))
    if image_data.mode == "RGBA":
        image_data = image_data.convert("RGB")

    if motion_control:
        image_data = [image_data] * 3
        
    if randomize_seed:
        seed = random.randint(0, max_64_bit_int)
    
    if version == "auto":
        if 14 < fps_id:
            version = "svdxt"
        else:
            version = "svd"

    frames = animate_on_gpu(
        image_data,
        seed,
        motion_bucket_id,
        fps_id,
        noise_aug_strength,
        decoding_t,
        version,
        width,
        height,
        num_inference_steps
    )
    
    os.makedirs(output_folder, exist_ok=True)
    base_count = len(glob(os.path.join(output_folder, "*." + video_format)))
    result_path = os.path.join(output_folder, f"{base_count:06d}." + video_format)

    if video_format == "gif":
        video_path = None
        gif_path = result_path
        export_to_gif(image=frames, output_gif_path=gif_path, fps=fps_id)
    else:
        video_path = result_path
        gif_path = None
        export_to_video(frames, video_path, fps=fps_id)
    
    end = time.time()
    secondes = int(end - start)
    minutes = math.floor(secondes / 60)
    secondes = secondes - (minutes * 60)
    hours = math.floor(minutes / 60)
    minutes = minutes - (hours * 60)
    information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
    "Wait 2 min before a new run to avoid quota penalty or use another computer. " + \
    "The video has been generated in " + \
    ((str(hours) + " h, ") if hours != 0 else "") + \
    ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
    str(secondes) + " sec."
    
    return [
        # Display for video
        gr.update(value = video_path, visible = video_format != "gif"),
        # Display for gif
        gr.update(value = gif_path, visible = video_format == "gif"),
        # Download button
        gr.update(label = "πŸ’Ύ Download animation in *." + video_format + " format", value=result_path, visible=True),
        # Frames
        gr.update(label = "Generated frames in *." + frame_format + " format", format = frame_format, value = frames, visible = True),
        # Used seed
        seed,
        # Information
        gr.update(value = information, visible = True),
        # Reset button
        gr.update(visible = True)
    ]

@torch.no_grad()
@spaces.GPU(duration=180)
def animate_on_gpu(
    image_data: Union[Image.Image, List[Image.Image]],
    seed: Optional[int] = 42,
    motion_bucket_id: int = 127,
    fps_id: int = 6,
    noise_aug_strength: float = 0.1,
    decoding_t: int = 3,
    version: str = "svdxt",
    width: int = 1024,
    height: int = 576,
    num_inference_steps: int = 25
):
    generator = torch.manual_seed(seed)

    if version == "dragnuwa":
        return dragnuwaPipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
    elif version == "svdxt":
        return fps25Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
    else:
        return fps14Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]


def resize_image(image, output_size=(1024, 576)):
    # Do not touch the image if the size is good
    if image.width == output_size[0] and image.height == output_size[1]:
        return image

    # Calculate aspect ratios
    target_aspect = output_size[0] / output_size[1]  # Aspect ratio of the desired size
    image_aspect = image.width / image.height  # Aspect ratio of the original image

    # Resize if the original image is larger
    if image_aspect > target_aspect:
        # Resize the image to match the target height, maintaining aspect ratio
        new_height = output_size[1]
        new_width = int(new_height * image_aspect)
        resized_image = image.resize((new_width, new_height), Image.LANCZOS)
        # Calculate coordinates for cropping
        left = (new_width - output_size[0]) / 2
        top = 0
        right = (new_width + output_size[0]) / 2
        bottom = output_size[1]
    else:
        # Resize the image to match the target width, maintaining aspect ratio
        new_width = output_size[0]
        new_height = int(new_width / image_aspect)
        resized_image = image.resize((new_width, new_height), Image.LANCZOS)
        # Calculate coordinates for cropping
        left = 0
        top = (new_height - output_size[1]) / 2
        right = output_size[0]
        bottom = (new_height + output_size[1]) / 2

    # Crop the image
    return resized_image.crop((left, top, right, bottom))

def reset():
    return [
        None,
        random.randint(0, max_64_bit_int),
        True,
        127,
        6,
        0.1,
        3,
        "mp4",
        "webp",
        "auto",
        1024,
        576,
        False,
        25
    ]

with gr.Blocks() as demo:
  gr.HTML("""
    <h1><center>Image-to-Video</center></h1>
    <big><center>Animate your image into 25 frames of 1024x576 pixels freely, without account, without watermark and download the video</center></big>
    <br/>
    
    <p>
    This demo is based on <i>Stable Video Diffusion</i> artificial intelligence.
    No prompt or camera control is handled here.
    To control motions, rather use <i><a href="https://huggingface.co/spaces/TencentARC/MotionCtrl_SVD">MotionCtrl SVD</a></i>.
    If you need 128 frames, rather use <i><a href="https://huggingface.co/spaces/modelscope/ExVideo-SVD-128f-v1">ExVideo</a></i>.
    </p>
    """)
  with gr.Row():
      with gr.Column():
          image = gr.Image(label="Upload your image", type="pil")
          with gr.Accordion("Advanced options", open=False):
              width = gr.Slider(label="Width", info="Width of the video", value=1024, minimum=256, maximum=1024, step=8)
              height = gr.Slider(label="Height", info="Height of the video", value=576, minimum=256, maximum=576, step=8)
              motion_control = gr.Checkbox(label="Motion control (experimental)", info="Fix the camera", value=False)
              video_format = gr.Radio([["*.mp4", "mp4"], ["*.avi", "avi"], ["*.wmv", "wmv"], ["*.mkv", "mkv"], ["*.mov", "mov"], ["*.gif", "gif"]], label="Video format for result", info="File extention", value="mp4", interactive=True)
              frame_format = gr.Radio([["*.webp", "webp"], ["*.png", "png"], ["*.jpeg", "jpeg"], ["*.gif (unanimated)", "gif"], ["*.bmp", "bmp"]], label="Image format for frames", info="File extention", value="webp", interactive=True)
              fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=25, minimum=5, maximum=30)
              motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
              noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1)
              num_inference_steps = gr.Slider(label="Number inference steps", info="More denoising steps usually lead to a higher quality video at the expense of slower inference", value=25, minimum=1, maximum=100, step=1)
              decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1)
              version = gr.Radio([["Auto", "auto"], ["πŸƒπŸ»β€β™€οΈ SVD (trained on 14 f/s)", "svd"], ["πŸƒπŸ»β€β™€οΈπŸ’¨ SVD-XT (trained on 25 f/s)", "svdxt"], ["DragNUWA (unstable)", "dragnuwa"]], label="Model", info="Trained model", value="auto", interactive=True)
              seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
              randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

          generate_btn = gr.Button(value="πŸš€ Animate", variant="primary")
          reset_btn = gr.Button(value="🧹 Reinit page", variant="stop", elem_id="reset_button", visible = False)

      with gr.Column():
          video_output = gr.Video(label="Generated video", format="mp4", autoplay=True, show_download_button=False)
          gif_output = gr.Image(label="Generated video", format="gif", show_download_button=False, visible=False)
          download_button = gr.DownloadButton(label="πŸ’Ύ Download video", visible=False)
          information_msg = gr.HTML(visible=False)
          gallery = gr.Gallery(label="Generated frames", visible=False)
      
  generate_btn.click(fn=animate, inputs=[
      image,
      seed,
      randomize_seed,
      motion_bucket_id,
      fps_id,
      noise_aug_strength,
      decoding_t,
      video_format,
      frame_format,
      version,
      width,
      height,
      motion_control,
      num_inference_steps
  ], outputs=[
      video_output,
      gif_output,
      download_button,
      gallery,
      seed,
      information_msg,
      reset_btn
  ], api_name="video")

  reset_btn.click(fn = reset, inputs = [], outputs = [
      image,
      seed,
      randomize_seed,
      motion_bucket_id,
      fps_id,
      noise_aug_strength,
      decoding_t,
      video_format,
      frame_format,
      version,
      width,
      height,
      motion_control,
      num_inference_steps
  ], queue = False, show_progress = False)
    
  gr.Examples(
    examples=[
        ["Examples/Fire.webp", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25],
        ["Examples/Water.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25],
        ["Examples/Town.jpeg", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25]
    ],
    inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, video_format, frame_format, version, width, height, motion_control, num_inference_steps],
    outputs=[video_output, gif_output, download_button, gallery, seed, information_msg, reset_btn],
    fn=animate,
    run_on_click=True,
    cache_examples=False,
  )

if __name__ == "__main__":
    demo.launch(share=True, show_api=False)