Kvikontent's picture
Update app.py
1e126d1 verified
raw
history blame
2.67 kB
import spaces
import torch
import torchaudio
from einops import rearrange
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
import os
# Load model config from stable-audio-tools
model, model_config = get_pretrained_model(
"stabilityai/stable-audio-open-1.0", config_filename="model_config.json"
)
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
# Load the model using the transformers library
token = os.environ.get("TOKEN")
model = AutoModelForAudioClassification.from_pretrained(
"stabilityai/stable-audio-open-1.0", use_auth_token=token, cache_dir=None
)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
# --- Gradio App ---
def generate_music(prompt, seconds_total, bpm, genre):
"""Generates music from a prompt using Stable Diffusion."""
# Set up text and timing conditioning
conditioning = [{
"prompt": f"{bpm} BPM {genre} {prompt}",
"seconds_start": 0,
"seconds_total": seconds_total
}]
# Generate stereo audio
output = generate_diffusion_cond(
model,
steps=100,
cfg_scale=7,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=0.3,
sigma_max=500,
sampler_type="dpmpp-3m-sde",
device=device
)
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
# Peak normalize, clip, convert to int16, and save to file
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
return output
@spaces.GPU(duration=120)
def generate_music_and_save(prompt, seconds_total, bpm, genre):
"""Generates music, saves it to a file, and returns the file path."""
output = generate_music(prompt, seconds_total, bpm, genre)
filename = "output.wav"
torchaudio.save(filename, output, sample_rate)
return filename
# Create Gradio interface
iface = spaces.Interface(
generate_music_and_save,
inputs=[
spaces.Textbox(label="Prompt (e.g., 'upbeat drum loop')", lines=1),
spaces.Slider(label="Duration (seconds)", minimum=1, maximum=60, step=1),
spaces.Slider(label="BPM", minimum=60, maximum=200, step=1),
spaces.Dropdown(label="Genre", choices=["pop", "rock", "hip hop", "electronic", "classical"], value="pop")
],
outputs=[
spaces.Audio(label="Generated Music")
],
title="Stable Audio Open",
description="Generate music from text prompts using Stable Audio."
)
iface.launch(share=True)