Kvikontent commited on
Commit
5fed86e
·
verified ·
1 Parent(s): 035d24b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -0
app.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForCausalLM
2
+ import torch
3
+ import gradio as gr
4
+
5
+ # Load pre-trained tokenizer and model
6
+ tokenizer = AutoTokenizer.from_pretrained('huggingartists/ed-sheeran')
7
+ model = AutoModelForCausalLM.from_pretrained('huggingartists/ed-sheeran', pad_token_id=50269)
8
+
9
+ # Function to generate predictions
10
+ def ed_lyrics(prompt):
11
+ encoded_prompt = tokenizer.encode(prompt + "\n\nLyrics: ", add_special_tokens=False, return_tensors='pt').to('cpu')
12
+ output_sequences = model.generate(encoded_prompt, max_length=75+len(encoded_prompt), top_p=0.8, do_sample=True)[0].tolist()
13
+ generated_song = tokenizer.decode(output_sequences[:], clean_up_tokenization_spaces=True)
14
+ final_result = generated_song.split("\n\n")[-1:]
15
+ return final_result
16
+
17
+ # Launch interactive web demo
18
+ iface = gr.Interface(fn=ed_lyrics, inputs=["textbox", outputs="text").launch()