Kurkur99 commited on
Commit
f346719
·
1 Parent(s): a5ce54d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -60
app.py CHANGED
@@ -1,66 +1,22 @@
1
  import streamlit as st
2
  import pandas as pd
3
- import numpy as np
4
- import matplotlib.pyplot as plt
5
- from wordcloud import WordCloud
6
- from sentiment_labeling import add_sentiment_column
7
- from keras.models import load_model
8
- import pickle
9
 
10
- # Load the model and tokenizer
11
- model = load_model('model.h5')
12
- with open('tokenizer.pkl', 'rb') as f:
13
- tokenizer = pickle.load(f)
14
 
15
- def predict_sentiment(text):
16
- # Tokenize and pad the input text
17
- seq = tokenizer.texts_to_sequences([text])
18
- padded_seq = pad_sequences(seq, maxlen=MAX_LENGTH)
19
- # Predict using the model
20
- prediction = model.predict(padded_seq)
21
- return np.argmax(prediction)
22
 
23
- # Streamlit app
24
- st.title("Thread Review Sentiment Analysis")
 
 
25
 
26
- # Upload CSV file
27
- uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
28
- if uploaded_file:
29
- data = pd.read_csv(uploaded_file)
30
- st.write("Data Loaded Successfully!")
31
-
32
- # Display raw data
33
- if st.checkbox("Show raw data"):
34
- st.write(data)
35
-
36
- # Add sentiment column
37
- data = add_sentiment_column(data)
38
-
39
- # Distribution of sentiments
40
- st.subheader("Distribution of Sentiments")
41
- sentiment_counts = data['sentiment'].value_counts()
42
- fig, ax = plt.subplots()
43
- sentiment_counts.plot(kind='bar', ax=ax)
44
- ax.set_title('Distribution of Sentiments')
45
- ax.set_xlabel('Sentiment')
46
- ax.set_ylabel('Count')
47
- st.pyplot(fig)
48
-
49
- # Word cloud for each sentiment
50
- st.subheader("Word Clouds for Sentiments")
51
- sentiments = ['positive', 'neutral', 'negative']
52
- for sentiment in sentiments:
53
- st.write(f"Word Cloud for {sentiment}")
54
- subset = data[data['sentiment'] == sentiment]
55
- text = " ".join(review for review in subset['review'])
56
- wordcloud = WordCloud(max_words=100, background_color="white").generate(text)
57
- plt.figure()
58
- plt.imshow(wordcloud, interpolation="bilinear")
59
- plt.axis("off")
60
- st.pyplot()
61
-
62
- # Individual review prediction
63
- user_input = st.text_area("Type a review here to predict its sentiment:")
64
- if user_input:
65
- sentiment_pred = predict_sentiment(user_input)
66
- st.write(f"The predicted sentiment is: {sentiment_pred}")
 
1
  import streamlit as st
2
  import pandas as pd
3
+ from eda import display_eda
4
+ from prediction import predict_and_strategy
 
 
 
 
5
 
6
+ # Load the data
7
+ data = pd.read_csv('threads_reviews.csv')
 
 
8
 
9
+ st.title("Sentiment Analysis and Business Strategy")
 
 
 
 
 
 
10
 
11
+ # EDA Section
12
+ st.header("Exploratory Data Analysis")
13
+ if st.checkbox("Show EDA", False): # Checkbox to toggle EDA display
14
+ display_eda(data)
15
 
16
+ # Prediction Section
17
+ st.header("Prediction")
18
+ user_input = st.text_area("Enter text for sentiment analysis:", "")
19
+ if st.button("Analyze"):
20
+ sentiment, strategy = predict_and_strategy(user_input)
21
+ st.write(f"Sentiment: {sentiment}")
22
+ st.write(f"Strategy: {strategy}")