Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +26 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoTokenizer
|
3 |
+
|
4 |
+
model_path = "citizenlab/twitter-xlm-roberta-base-sentiment-finetunned"
|
5 |
+
sentiment_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path)
|
6 |
+
|
7 |
+
model_name = "citizenlab/twitter-xlm-roberta-base-sentiment-finetunned"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
|
10 |
+
def main():
|
11 |
+
st.title("Twitter Sentiment Analysis")
|
12 |
+
|
13 |
+
with st.form("text_field"):
|
14 |
+
text = st.text_area('Enter some text:')
|
15 |
+
# clicked == True เมื่อปุ่มถูกคลิก
|
16 |
+
clicked = st.form_submit_button("Analyze Sentiment")
|
17 |
+
|
18 |
+
if clicked:
|
19 |
+
# วิเคราะห์ความรู้สึกของข้อความ
|
20 |
+
results = sentiment_classifier(text)
|
21 |
+
st.write("Sentiment Analysis Results:")
|
22 |
+
for result in results:
|
23 |
+
st.write(f"Label: {result['label']}, Score: {result['score']:.4f}")
|
24 |
+
|
25 |
+
if __name__ == "__main__":
|
26 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
altair<5
|