Chat_literature / lc_base /dnd_database.py
carbonnnnn's picture
update IGL
7117f9e
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
import PyPDF2
# Function to process a PDF file
def process_pdf(file_stream):
if isinstance(file_stream, dict): # Check if PDF was obtained using Drag and Drop or Drive link
file_path = file_stream['name'] # Use 'path' for local testing and 'name' for Gradio
pdf_reader = PyPDF2.PdfReader(file_path)
else:
pdf_reader = PyPDF2.PdfReader(file_stream)
text = ""
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text()
return text
def create_dnd_database(file_list):
raw_text = ''
if file_list is None:
return None
for pdf in file_list:
raw_text += process_pdf(pdf)
embedding = OpenAIEmbeddings()
text_splitter = CharacterTextSplitter(
separator = "\n",
chunk_size = 1000,
chunk_overlap = 200,
length_function = len,
)
texts = text_splitter.split_text(raw_text)
print('Length of text: ' + str(len(raw_text)))
db = FAISS.from_texts(texts, embedding)
return db