ocr-table-v2 / app.py
KoonJamesZ's picture
Create app.py
0157c4f verified
import gradio as gr
import torch
from transformers import TableTransformerForObjectDetection
import matplotlib.pyplot as plt
from transformers import DetrFeatureExtractor
import pandas as pd
import uuid
from surya.ocr import run_ocr
# from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
from PIL import ImageDraw, Image
import os
from pdf2image import convert_from_path
import tempfile
from ultralyticsplus import YOLO, render_result
import cv2
import numpy as np
from fpdf import FPDF
def convert_pdf_images(pdf_path):
# Convert PDF to images
images = convert_from_path(pdf_path)
# Save each page as a temporary image and collect file paths
temp_file_paths = []
for i, page in enumerate(images):
# Create a temporary file with a unique name
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
page.save(temp_file.name, 'PNG') # Save the image to the temporary file
temp_file_paths.append(temp_file.name) # Add file path to the list
return temp_file_paths[0] # Return the list of temporary file paths
# Load model
model_yolo = YOLO('keremberke/yolov8m-table-extraction')
# Set model parameters
model_yolo.overrides['conf'] = 0.25 # NMS confidence threshold
model_yolo.overrides['iou'] = 0.45 # NMS IoU threshold
model_yolo.overrides['agnostic_nms'] = False # NMS class-agnostic
model_yolo.overrides['max_det'] = 1000 # maximum number of detections per image
# new v1.1 checkpoints require no timm anymore
device = "cuda" if torch.cuda.is_available() else "cpu"
langs = ["en","th"] # Replace with your languages - optional but recommended
det_processor, det_model = load_det_processor(), load_det_model()
rec_model, rec_processor = load_rec_model(), load_rec_processor()
feature_extractor = DetrFeatureExtractor()
model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition-v1.1-all")
def crop_table(filename):
# Set image
image_path = filename
image = Image.open(image_path)
image_np = np.array(image)
# Perform inference
results = model_yolo.predict(image_path)
# Extract the first bounding box (assuming there's only one table)
bbox = results[0].boxes[0]
x1, y1, x2, y2 = map(int, bbox.xyxy[0]) # Get the bounding box coordinates
# Crop the image using the bounding box coordinates
cropped_image = image_np[y1:y2, x1:x2]
# Convert the cropped image to RGB (if it's not already in RGB)
cropped_image_rgb = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB)
# Save the cropped image as a PDF
cropped_image_pil = Image.fromarray(cropped_image_rgb)
# Save the cropped image to a temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
cropped_image_pil.save(temp_file.name)
return temp_file.name
def extract_table(image_path):
image = Image.open(image_path)
predictions = run_ocr([image], [langs], det_model, det_processor, rec_model, rec_processor)
objs = []
for t in predictions[0].text_lines:
objs.append([t.polygon,t.confidence,t.text,t.bbox])
# Sort objects by their y-coordinate to facilitate row separation
objs = sorted(objs, key=lambda x: x[3][1])
# Initialize lists to store rows and column boundaries
rows = []
row_threshold = 5 # Adjust as needed to separate rows based on y-coordinates
column_boundaries = []
# First pass to determine approximate column boundaries based on x-coordinates
for obj in objs:
x_min = obj[3][0] # x-coordinate of the left side of the bounding box
if not any(abs(x - x_min) < 10 for x in column_boundaries):
column_boundaries.append(x_min)
# Sort column boundaries to ensure proper left-to-right order
column_boundaries.sort()
# Second pass to organize text by rows and columns
current_row = []
previous_y = None
for obj in objs:
bbox = obj[3]
text = obj[2]
# Check if the current item belongs to a new row based on y-coordinate
if previous_y is None or abs(bbox[1] - previous_y) > row_threshold:
# Add the completed row to the list if it's not empty
if current_row:
rows.append(current_row)
current_row = [''] * len(column_boundaries) # Initialize new row with placeholders
# Find the appropriate column for the current text based on x-coordinate
for col_index, x_bound in enumerate(column_boundaries):
if abs(bbox[0] - x_bound) < 10: # Adjust threshold as necessary
current_row[col_index] = text
break
previous_y = bbox[1]
# Add the last row if it's not empty
if current_row:
rows.append(current_row)
# Create DataFrame from rows
df = pd.DataFrame(rows)
df.columns = df.iloc[0]
df = df.iloc[1:]
# Save DataFrame to an CSV file
csv_path = f'{uuid.uuid4()}.csv'
df.to_csv(csv_path,index=False)
# Save table_with_bbox_path
table_with_bbox_path = f"{uuid.uuid4()}.png"
for obj in objs:
# draw bbox on image
draw = ImageDraw.Draw(image)
draw.rectangle(obj[3], outline='red', width=1)
image.save(table_with_bbox_path)
return csv_path,table_with_bbox_path
# Function to process the uploaded file
def process_file(uploaded_file):
images_table = convert_pdf_images(uploaded_file)
croped_table = crop_table(images_table)
filepath,bbox_table= extract_table(croped_table)
os.remove(images_table)
os.remove(croped_table)
return filepath, bbox_table # Return the file path for download
# Function to clear the inputs and outputs
def clear_inputs():
return None, None, None # Clear both input and output
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Upload a PDF, Process it, and Download the Processed File")
with gr.Row():
upload = gr.File(label="Upload PDF", type="filepath", file_types=[".pdf"])
download = gr.File(label="Download Processed PDF")
with gr.Row():
process_button = gr.Button("Process")
clear_button = gr.Button("Clear") # Custom clear button
image_display = gr.Image(label="Processed Image")
# Trigger the file processing with the button click
process_button.click(process_file, inputs=upload, outputs=[download, image_display])
# Trigger clearing inputs and outputs
clear_button.click(clear_inputs, inputs=None, outputs=[upload, download, image_display])
# Launch the interface
demo.launch()
# print(process_file("/content/ขอ ตารางกริยาช่องที่ 1 ในภาษาไทย (กริยาคำกริยา) ซ... - ขอ ตารางกริยาช่องที่ 1 ในภาษาไทย (กริย.pdf"))