import gradio as gr import torch from transformers import TableTransformerForObjectDetection import matplotlib.pyplot as plt from transformers import DetrFeatureExtractor import pandas as pd import uuid from surya.ocr import run_ocr # from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor from surya.model.recognition.model import load_model as load_rec_model from surya.model.recognition.processor import load_processor as load_rec_processor from PIL import ImageDraw, Image import os from pdf2image import convert_from_path import tempfile from ultralyticsplus import YOLO, render_result import cv2 import numpy as np from fpdf import FPDF def convert_pdf_images(pdf_path): # Convert PDF to images images = convert_from_path(pdf_path) # Save each page as a temporary image and collect file paths temp_file_paths = [] for i, page in enumerate(images): # Create a temporary file with a unique name temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png") page.save(temp_file.name, 'PNG') # Save the image to the temporary file temp_file_paths.append(temp_file.name) # Add file path to the list return temp_file_paths[0] # Return the list of temporary file paths # Load model model_yolo = YOLO('keremberke/yolov8m-table-extraction') # Set model parameters model_yolo.overrides['conf'] = 0.25 # NMS confidence threshold model_yolo.overrides['iou'] = 0.45 # NMS IoU threshold model_yolo.overrides['agnostic_nms'] = False # NMS class-agnostic model_yolo.overrides['max_det'] = 1000 # maximum number of detections per image # new v1.1 checkpoints require no timm anymore device = "cuda" if torch.cuda.is_available() else "cpu" langs = ["en","th"] # Replace with your languages - optional but recommended det_processor, det_model = load_det_processor(), load_det_model() rec_model, rec_processor = load_rec_model(), load_rec_processor() feature_extractor = DetrFeatureExtractor() model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition-v1.1-all") def crop_table(filename): # Set image image_path = filename image = Image.open(image_path) image_np = np.array(image) # Perform inference results = model_yolo.predict(image_path) # Extract the first bounding box (assuming there's only one table) bbox = results[0].boxes[0] x1, y1, x2, y2 = map(int, bbox.xyxy[0]) # Get the bounding box coordinates # Crop the image using the bounding box coordinates cropped_image = image_np[y1:y2, x1:x2] # Convert the cropped image to RGB (if it's not already in RGB) cropped_image_rgb = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB) # Save the cropped image as a PDF cropped_image_pil = Image.fromarray(cropped_image_rgb) # Save the cropped image to a temporary file temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png") cropped_image_pil.save(temp_file.name) return temp_file.name def extract_table(image_path): image = Image.open(image_path) predictions = run_ocr([image], [langs], det_model, det_processor, rec_model, rec_processor) objs = [] for t in predictions[0].text_lines: objs.append([t.polygon,t.confidence,t.text,t.bbox]) # Sort objects by their y-coordinate to facilitate row separation objs = sorted(objs, key=lambda x: x[3][1]) # Initialize lists to store rows and column boundaries rows = [] row_threshold = 5 # Adjust as needed to separate rows based on y-coordinates column_boundaries = [] # First pass to determine approximate column boundaries based on x-coordinates for obj in objs: x_min = obj[3][0] # x-coordinate of the left side of the bounding box if not any(abs(x - x_min) < 10 for x in column_boundaries): column_boundaries.append(x_min) # Sort column boundaries to ensure proper left-to-right order column_boundaries.sort() # Second pass to organize text by rows and columns current_row = [] previous_y = None for obj in objs: bbox = obj[3] text = obj[2] # Check if the current item belongs to a new row based on y-coordinate if previous_y is None or abs(bbox[1] - previous_y) > row_threshold: # Add the completed row to the list if it's not empty if current_row: rows.append(current_row) current_row = [''] * len(column_boundaries) # Initialize new row with placeholders # Find the appropriate column for the current text based on x-coordinate for col_index, x_bound in enumerate(column_boundaries): if abs(bbox[0] - x_bound) < 10: # Adjust threshold as necessary current_row[col_index] = text break previous_y = bbox[1] # Add the last row if it's not empty if current_row: rows.append(current_row) # Create DataFrame from rows df = pd.DataFrame(rows) df.columns = df.iloc[0] df = df.iloc[1:] # Save DataFrame to an CSV file csv_path = f'{uuid.uuid4()}.csv' df.to_csv(csv_path,index=False) # Save table_with_bbox_path table_with_bbox_path = f"{uuid.uuid4()}.png" for obj in objs: # draw bbox on image draw = ImageDraw.Draw(image) draw.rectangle(obj[3], outline='red', width=1) image.save(table_with_bbox_path) return csv_path,table_with_bbox_path # Function to process the uploaded file def process_file(uploaded_file): images_table = convert_pdf_images(uploaded_file) croped_table = crop_table(images_table) filepath,bbox_table= extract_table(croped_table) os.remove(images_table) os.remove(croped_table) return filepath, bbox_table # Return the file path for download # Function to clear the inputs and outputs def clear_inputs(): return None, None, None # Clear both input and output # Define the Gradio interface with gr.Blocks() as demo: gr.Markdown("## Upload a PDF, Process it, and Download the Processed File") with gr.Row(): upload = gr.File(label="Upload PDF", type="filepath", file_types=[".pdf"]) download = gr.File(label="Download Processed PDF") with gr.Row(): process_button = gr.Button("Process") clear_button = gr.Button("Clear") # Custom clear button image_display = gr.Image(label="Processed Image") # Trigger the file processing with the button click process_button.click(process_file, inputs=upload, outputs=[download, image_display]) # Trigger clearing inputs and outputs clear_button.click(clear_inputs, inputs=None, outputs=[upload, download, image_display]) # Launch the interface demo.launch() # print(process_file("/content/ขอ ตารางกริยาช่องที่ 1 ในภาษาไทย (กริยาคำกริยา) ซ... - ขอ ตารางกริยาช่องที่ 1 ในภาษาไทย (กริย.pdf"))