Spaces:
Sleeping
Sleeping
import gradio as gr | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
# Define a function to load the model from the Hugging Face Hub | |
def load_model(): | |
repo_id = "forestav/gguf_lora_model" # Your Hugging Face repo | |
model_file = "unsloth.F16.gguf" # Model file in GGUF format | |
# Download the model file | |
local_path = hf_hub_download(repo_id=repo_id, filename=model_file) | |
print(f"Model loaded from: {local_path}") | |
# Load the model using llama_cpp | |
model = Llama(model_path=local_path, n_ctx=2048, n_threads=8, use_metal=False) | |
return model | |
# Initialize the model | |
model = load_model() | |
# Define the response function for chat interaction | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
try: | |
# Prepare the system message and chat history | |
messages = [{"role": "system", "content": system_message}] | |
# Add the history of the conversation | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
# Add the current message from the user | |
messages.append({"role": "user", "content": message}) | |
# Make the model prediction | |
response = model.create_chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
return response["choices"][0]["message"]["content"] | |
except Exception as e: | |
# Return error message if something goes wrong | |
return f"Error: {e}" | |
# Define the Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() | |