Spaces:
Running
Running
oriyormeta
commited on
Commit
·
dc1ddcc
0
Parent(s):
Initial commit
Browse files- .gitattributes +35 -0
- .gitignore +13 -0
- .pre-commit-config.yaml +53 -0
- Makefile +13 -0
- README.md +44 -0
- app.py +318 -0
- pyproject.toml +13 -0
- requirements.txt +16 -0
- src/about.py +72 -0
- src/display/css_html_js.py +105 -0
- src/display/formatting.py +27 -0
- src/display/utils.py +110 -0
- src/envs.py +25 -0
- src/leaderboard/read_evals.py +196 -0
- src/populate.py +58 -0
- src/submission/check_validity.py +99 -0
- src/submission/submit.py +119 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
scale-hf-logo.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
auto_evals/
|
2 |
+
venv/
|
3 |
+
__pycache__/
|
4 |
+
.env
|
5 |
+
.ipynb_checkpoints
|
6 |
+
*ipynb
|
7 |
+
.vscode/
|
8 |
+
|
9 |
+
eval-queue/
|
10 |
+
eval-results/
|
11 |
+
eval-queue-bk/
|
12 |
+
eval-results-bk/
|
13 |
+
logs/
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
default_language_version:
|
16 |
+
python: python3
|
17 |
+
|
18 |
+
ci:
|
19 |
+
autofix_prs: true
|
20 |
+
autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
|
21 |
+
autoupdate_schedule: quarterly
|
22 |
+
|
23 |
+
repos:
|
24 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
25 |
+
rev: v4.3.0
|
26 |
+
hooks:
|
27 |
+
- id: check-yaml
|
28 |
+
- id: check-case-conflict
|
29 |
+
- id: detect-private-key
|
30 |
+
- id: check-added-large-files
|
31 |
+
args: ['--maxkb=1000']
|
32 |
+
- id: requirements-txt-fixer
|
33 |
+
- id: end-of-file-fixer
|
34 |
+
- id: trailing-whitespace
|
35 |
+
|
36 |
+
- repo: https://github.com/PyCQA/isort
|
37 |
+
rev: 5.12.0
|
38 |
+
hooks:
|
39 |
+
- id: isort
|
40 |
+
name: Format imports
|
41 |
+
|
42 |
+
- repo: https://github.com/psf/black
|
43 |
+
rev: 22.12.0
|
44 |
+
hooks:
|
45 |
+
- id: black
|
46 |
+
name: Format code
|
47 |
+
additional_dependencies: ['click==8.0.2']
|
48 |
+
|
49 |
+
- repo: https://github.com/charliermarsh/ruff-pre-commit
|
50 |
+
# Ruff version.
|
51 |
+
rev: 'v0.0.267'
|
52 |
+
hooks:
|
53 |
+
- id: ruff
|
Makefile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.PHONY: style format
|
2 |
+
|
3 |
+
|
4 |
+
style:
|
5 |
+
python -m black --line-length 119 .
|
6 |
+
python -m isort .
|
7 |
+
ruff check --fix .
|
8 |
+
|
9 |
+
|
10 |
+
quality:
|
11 |
+
python -m black --check --line-length 119 .
|
12 |
+
python -m isort --check-only .
|
13 |
+
ruff check .
|
README.md
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: KoLMogorov Test
|
3 |
+
emoji: 🥇
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
app_file: app.py
|
8 |
+
pinned: true
|
9 |
+
license: apache-2.0
|
10 |
+
---
|
11 |
+
|
12 |
+
# Start the configuration
|
13 |
+
|
14 |
+
Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
|
15 |
+
|
16 |
+
Results files should have the following format and be stored as json files:
|
17 |
+
```json
|
18 |
+
{
|
19 |
+
"config": {
|
20 |
+
"model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
|
21 |
+
"model_name": "path of the model on the hub: org/model",
|
22 |
+
"model_sha": "revision on the hub",
|
23 |
+
},
|
24 |
+
"results": {
|
25 |
+
"task_name": {
|
26 |
+
"metric_name": score,
|
27 |
+
},
|
28 |
+
"task_name2": {
|
29 |
+
"metric_name": score,
|
30 |
+
}
|
31 |
+
}
|
32 |
+
}
|
33 |
+
```
|
34 |
+
|
35 |
+
Request files are created automatically by this tool.
|
36 |
+
|
37 |
+
If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
|
38 |
+
|
39 |
+
# Code logic for more complex edits
|
40 |
+
|
41 |
+
You'll find
|
42 |
+
- the main table' columns names and properties in `src/display/utils.py`
|
43 |
+
- the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
|
44 |
+
- the logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
|
app.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import datetime
|
4 |
+
import smtplib
|
5 |
+
from email.mime.text import MIMEText
|
6 |
+
from email.mime.multipart import MIMEMultipart
|
7 |
+
from email.utils import parseaddr
|
8 |
+
import numpy as np
|
9 |
+
import gradio as gr
|
10 |
+
import pandas as pd
|
11 |
+
from datasets import load_dataset
|
12 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
13 |
+
from huggingface_hub import HfApi
|
14 |
+
|
15 |
+
|
16 |
+
TOKEN = os.environ.get("TOKEN", None)
|
17 |
+
SUBMISSION_DATASET = "KoLMogorov-Test/submissions"
|
18 |
+
VERSION = "v1"
|
19 |
+
|
20 |
+
api = HfApi()
|
21 |
+
|
22 |
+
|
23 |
+
def format_error(msg):
|
24 |
+
return f"<p style='color: red; font-size: 20px; text-align: center;'>{msg}</p>"
|
25 |
+
|
26 |
+
def format_warning(msg):
|
27 |
+
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{msg}</p>"
|
28 |
+
|
29 |
+
def format_log(msg):
|
30 |
+
return f"<p style='color: green; font-size: 20px; text-align: center;'>{msg}</p>"
|
31 |
+
|
32 |
+
def model_hyperlink(link, model_name):
|
33 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
34 |
+
|
35 |
+
|
36 |
+
# Function to restart the space
|
37 |
+
def restart_space():
|
38 |
+
return
|
39 |
+
|
40 |
+
TYPES = ["markdown", "markdown", "number", "number", "number", "number", "number", "number", "str", "str"]
|
41 |
+
|
42 |
+
|
43 |
+
def save_files_for_eval(
|
44 |
+
model_name: str,
|
45 |
+
organization: str,
|
46 |
+
organization_email: str,
|
47 |
+
path_to_file,
|
48 |
+
prior_file,
|
49 |
+
results_json,
|
50 |
+
modality: str,
|
51 |
+
split: str,
|
52 |
+
token: str,
|
53 |
+
):
|
54 |
+
# Validate inputs
|
55 |
+
if not model_name:
|
56 |
+
return format_error("Model name is required.")
|
57 |
+
if not organization and organization_email:
|
58 |
+
return format_error("Organization and email required.")
|
59 |
+
|
60 |
+
# Get the current date for the directory name
|
61 |
+
date_str = datetime.datetime.today().strftime('%Y-%m-%d')
|
62 |
+
|
63 |
+
# Define the base path in the repository (remove leading slash)
|
64 |
+
base_path_in_repo = f"{organization}/{model_name}/{VERSION}_{split}_{modality}_{date_str}"
|
65 |
+
|
66 |
+
# List of files to upload
|
67 |
+
files_to_upload = [
|
68 |
+
(path_to_file, "prediction.jsonl"),
|
69 |
+
(prior_file, "decoder.py"),
|
70 |
+
(results_json, "results.json")
|
71 |
+
]
|
72 |
+
|
73 |
+
# Upload each file
|
74 |
+
for file, filename in files_to_upload:
|
75 |
+
if file is not None:
|
76 |
+
path_in_repo = f"{base_path_in_repo}/{filename}"
|
77 |
+
api.upload_file(
|
78 |
+
repo_id=SUBMISSION_DATASET,
|
79 |
+
path_or_fileobj=file.name,
|
80 |
+
path_in_repo=path_in_repo,
|
81 |
+
repo_type="dataset",
|
82 |
+
token=token
|
83 |
+
)
|
84 |
+
else:
|
85 |
+
return format_error(f"File {filename} is missing.")
|
86 |
+
|
87 |
+
return format_log("All files uploaded successfully. Please email us at [email protected] to verify your submission.")
|
88 |
+
|
89 |
+
|
90 |
+
# Gradio interface
|
91 |
+
demo = gr.Blocks()
|
92 |
+
with demo:
|
93 |
+
gr.HTML("""<h1 id="space-title">The KoLMogorov-Test: Can CodeLMs lead to the next breakthrough in data compression?</h1>""")
|
94 |
+
gr.HTML("""The Kolmogorov complexity of a sequence is the length of the shortest computer program that produces the sequence. <br><br>The aim of the KoLMogorov-Test (KT) is to empirically evaluate the ability of CodeLMs to detect patterns in and compress sequences by writing short programs that output them.
|
95 |
+
<h2>The Task</h2>
|
96 |
+
Given a sequence, the CodeLM is asked to produce a short python program that outputs the sequence. The programs are compressed by a user-defined compressor before submission, and code length is measured in compressed form. In order to evaluate the correctness of a program, it is first decoded using a user-provided decoder and then executed. The decoder size counts towards the compressed length, and may contain e.g. a library of helper functions (DSL). <br><br>
|
97 |
+
|
98 |
+
The length of python and its standard library are not counted, but in order to prevent cheating the programs must pass a stringent check. Programs cannot import arbitrary modules, use advanced language features, access the internet, etc. <br><br>
|
99 |
+
|
100 |
+
KT currently includes six modalities - text, DNA, three encodings of audio data (MFCC, 16-bit, and 8-bit), and synthetic sequences produced by random programs. Two dataset sizes are available: a small one with 1MB per modality, and a large one with 1GB (DNA and text only).""")
|
101 |
+
|
102 |
+
gr.HTML("""<h2>Getting Started</h2>
|
103 |
+
Access the data from the <a href="https://github.com/facebookresearch/KoLMogorov" target="_blank">GitHub repo</a>.
|
104 |
+
<br><br>In addition, we provide code to reproduce experiments from the paper including our DSL and evaluation code.
|
105 |
+
<br><br>If you have any questions, please email us at <a href="mailto:[email protected]">[email protected]</a>.
|
106 |
+
<br><br>You are allowed to:<br><br>
|
107 |
+
<ul>
|
108 |
+
<li>Split the original sequence to subsequent sub-sequences.</li>
|
109 |
+
<li>Use the standard python library including Gzip.</li>
|
110 |
+
<li>Create new DSLs.</li>
|
111 |
+
<li>Create new priors to encode the programs.</li>
|
112 |
+
</ul>
|
113 |
+
|
114 |
+
<br>With the following restrictions:<br><br>
|
115 |
+
<ul>
|
116 |
+
<li>To prevent cases where compression of the data is performed by external code, we prevent access to the internet and usage of previous compression algorithms, excluding Gzip which is viewed as a strong baseline. </li>
|
117 |
+
<li>We return the compression rate with and without the cost of the decoder. When reporting results, we consider the additional code as negligible if it is <100KB and does not scale with the length of the sequence. When reporting results for the 1GB seqeunces, please always report results including the decoder.</li>
|
118 |
+
</ul>
|
119 |
+
""")
|
120 |
+
|
121 |
+
gr.HTML("""<h2>How can we achieve future progress?</h2>""")
|
122 |
+
gr.Markdown("""In the paper we show that stronger models perform better on KT and thatn CodeLMs can outperform other compression methods on synthetic distributions when training data is avialable. Another exciting direction for future work is to encode programs as lambda experssions, making it feasible to fit a small interpreter of only 383 in the decoder as <a href="https://justine.lol/lambda/" target="_blank">suggested here</a>.""")
|
123 |
+
|
124 |
+
gr.HTML("""<h2>Making a New Submission</h2>""")
|
125 |
+
|
126 |
+
gr.Markdown("""To make a new submission, upload three files - a file with the encoded program, a file that decodes the programs to executable code, and a file with the expected results. Let's consider a toy example for the sequence - [5, 10, 13, 14, 16, 5, 5, 5]""")
|
127 |
+
|
128 |
+
gr.Markdown("""The programs file is a jsonl that follows the following format. We recommend submitting a single program for the whole sequence:
|
129 |
+
```
|
130 |
+
{"sub_sequence_start_index": 0, "sub_sequence_end_index": 7 (the length of the sequence), "encoded_program": "H4sIAI7Te2cC/8svLSkoLVGwVYg21VEwNABiYyA2AWIzHQVTCIoFAMxnYTIlAAAA (An encoding of the program whose execution results in the input sequence. This is the Gzip encoding of the program that returns the input sequence)."}
|
131 |
+
```
|
132 |
+
|
133 |
+
For simplicity, we allow splitting to subsequent sub-sequences:
|
134 |
+
```
|
135 |
+
{"sub_sequence_start_index": 0, "sub_sequence_end_index": k, "encoded_program": "An encoding of the program whose execution results in the subsequence between indeses [0, n]."}
|
136 |
+
{"sub_sequence_start_index": k+1, "sub_sequence_end_index": k+1+j, "encoded_program": "An encoding of the program whose execution results in the subsequence between indeses [n+1, n+1+m]."}
|
137 |
+
...
|
138 |
+
{"sub_sequence_start_index": n, "sub_sequence_end_index": len(sequence), "encoded_program": "An encoding of the program whose execution results in the subsequence between indeses [n, len(sequence)]."}
|
139 |
+
```
|
140 |
+
""")
|
141 |
+
|
142 |
+
gr.Markdown("""For decoding, upload a python file that implements the 'decode' method, which receives as input an programs from the programs file and returns the executable python program. Executing the decoded program must result in the input sequence. For example, this is a decoder that decompresses using Gzip.
|
143 |
+
```
|
144 |
+
import gzip
|
145 |
+
import base64
|
146 |
+
|
147 |
+
def decode(program):
|
148 |
+
return gzip.decompress(base64.b64decode(program)).decode('utf-8')
|
149 |
+
```
|
150 |
+
""")
|
151 |
+
|
152 |
+
gr.Markdown("""For the results, upload a Json file that matches the Result object returned from the <a href="https://github.com/facebookresearch/KoLMogorov/tree/main/src/experiments/evaluation" target="_blank">official evaluation script</a>. If you are interested in verification of your results, please send an <a href="mailto:[email protected]">email</a> with the submission details. We will then execute the code and verify the execution matches the original sequece.
|
153 |
+
```
|
154 |
+
{
|
155 |
+
"compressed_programs_size": 64,
|
156 |
+
"decoder_size": 118,
|
157 |
+
"compressed_size": 182,
|
158 |
+
"compression_rate_without_decoder": 8.0,
|
159 |
+
"compression_rate": 22.75,
|
160 |
+
"accuracy": 1,
|
161 |
+
"gold_data_size": 8,
|
162 |
+
"first_error": null
|
163 |
+
}
|
164 |
+
```
|
165 |
+
""")
|
166 |
+
|
167 |
+
with gr.Accordion(""):
|
168 |
+
with gr.Row():
|
169 |
+
with gr.Column():
|
170 |
+
model_name_textbox = gr.Textbox(label="Model Name")
|
171 |
+
organization = gr.Textbox(label="Organization")
|
172 |
+
mail = gr.Textbox(
|
173 |
+
label="Contact Email (will be stored privately)"
|
174 |
+
)
|
175 |
+
split_dropdown = gr.Dropdown(
|
176 |
+
choices=["Small (1MB)", "Large (1GB)"],
|
177 |
+
label="Size",
|
178 |
+
)
|
179 |
+
modality_dropdown = gr.Dropdown(
|
180 |
+
choices=["Text", "Dna", "Audio-MFCC", "Audio-16-Bit", "Audio-8-Bit", "Synthetic"],
|
181 |
+
label="Modality",
|
182 |
+
)
|
183 |
+
prior_dropdown = gr.Dropdown(
|
184 |
+
choices=["Custom (attached file)", "None"],
|
185 |
+
label="Decoding",
|
186 |
+
)
|
187 |
+
url_textbox = gr.Textbox(label="URL to Project Information",
|
188 |
+
interactive=True,)
|
189 |
+
model_family_textbox = gr.Textbox(label="Base Model")
|
190 |
+
|
191 |
+
with gr.Column():
|
192 |
+
file_output = gr.File(label="Programs File")
|
193 |
+
prior_file = gr.File(label="Decoder File")
|
194 |
+
results_json = gr.File(label="Results Json")
|
195 |
+
|
196 |
+
submit_button = gr.Button("Submit")
|
197 |
+
submission_result = gr.Markdown()
|
198 |
+
|
199 |
+
submit_button.click(
|
200 |
+
lambda model_name, split, model_family, url, path_to_file, organization, mail, prior_file, results_json, prior_dropdown, modality_dropdown: (
|
201 |
+
save_files_for_eval(
|
202 |
+
model_name,
|
203 |
+
organization,
|
204 |
+
mail,
|
205 |
+
path_to_file,
|
206 |
+
prior_file,
|
207 |
+
results_json,
|
208 |
+
modality_dropdown,
|
209 |
+
split,
|
210 |
+
TOKEN # Ensure TOKEN is defined and accessible
|
211 |
+
)
|
212 |
+
),
|
213 |
+
[
|
214 |
+
model_name_textbox,
|
215 |
+
split_dropdown,
|
216 |
+
model_family_textbox,
|
217 |
+
url_textbox,
|
218 |
+
file_output,
|
219 |
+
organization,
|
220 |
+
mail,
|
221 |
+
prior_file,
|
222 |
+
results_json,
|
223 |
+
prior_dropdown,
|
224 |
+
modality_dropdown
|
225 |
+
],
|
226 |
+
submission_result,
|
227 |
+
)
|
228 |
+
|
229 |
+
data = {
|
230 |
+
"Text": {
|
231 |
+
"Model": ["Gzip", "GPT4-o", "LLAMA-3.1-405B", "LLAMA-3.1-70B", "LLAMA-3.1-8B"],
|
232 |
+
"Pass@1": [100, 69.5, 33.3, 18.0, 8.5],
|
233 |
+
"Precision": [1.0, 1.34, 2.18, 2.78, 2.48],
|
234 |
+
"Compression Rate": [0.357, "n/a", "n/a", "n/a", "n/a"],
|
235 |
+
"Verified": ['✓', '✓', '✓', '✓', '✓'],
|
236 |
+
},
|
237 |
+
"DNA": {
|
238 |
+
"Model": ["Gzip", "GPT4-o", "LLAMA-3.1-405B", "LLAMA-3.1-70B", "LLAMA-3.1-8B"],
|
239 |
+
"Pass@1": [100, 54.2, 6.5, 9.6, 1.4],
|
240 |
+
"Precision": [1.0, 1.94, 3.17, 3.17, 3.12],
|
241 |
+
"Compression Rate": [0.714, "n/a", "n/a", "n/a", "n/a"],
|
242 |
+
"Verified": ['✓', '✓', '✓', '✓', '✓'],
|
243 |
+
},
|
244 |
+
"Audio-8-bit": {
|
245 |
+
"Model": ["Gzip", "GPT4-o", "LLAMA-3.1-405B", "LLAMA-3.1-70B", "LLAMA-3.1-8B"],
|
246 |
+
"Pass@1": [100, 36.4, 15.0, 10.1, 3.9],
|
247 |
+
"Precision": [1.0, 1.43, 1.66, 1.67, 1.74],
|
248 |
+
"Compression Rate": [0.398, "n/a", "n/a", "n/a", "n/a"],
|
249 |
+
"Verified": ['✓', '✓', '✓', '✓', '✓'],
|
250 |
+
},
|
251 |
+
"Audio-16-bit": {
|
252 |
+
"Model": ["Gzip", "GPT4-o", "LLAMA-3.1-405B", "LLAMA-3.1-70B", "LLAMA-3.1-8B"],
|
253 |
+
"Pass@1": [100, 69.5, 35.6, 18.0, 5.9],
|
254 |
+
"Precision": [1.0, 1.34, 1.66, 1.96, 1.54],
|
255 |
+
"Compression Rate": [0.920, "n/a", "n/a", "n/a", "n/a"],
|
256 |
+
"Verified": ['✓', '✓', '✓', '✓', '✓'],
|
257 |
+
},
|
258 |
+
"Audio-MFCC": {
|
259 |
+
"Model": ["Gzip", "GPT4-o", "LLAMA-3.1-405B", "LLAMA-3.1-70B", "LLAMA-3.1-8B"],
|
260 |
+
"Pass@1": [100, 83.8, 29.6, 24.2, 8.8],
|
261 |
+
"Precision": [1.0, 1.33, 1.58, 1.56, 1.51],
|
262 |
+
"Compression Rate": [0.903, "n/a", "n/a", "n/a", "n/a"],
|
263 |
+
"Verified": ['✓', '✓', '✓', '✓', '✓'],
|
264 |
+
},
|
265 |
+
"Synthetic": {
|
266 |
+
"Model": ["SeqCoder-8B + Gzip", "Gzip", "GPT4-o", "LLAMA-3.1-405B", "LLAMA-3.1-70B", "LLAMA-3.1-8B"],
|
267 |
+
"Pass@1": [100, 100, 44.7, 24.8, 22.5, 3.7],
|
268 |
+
"Precision": [0.64, 1.0, 1.65, 2.06, 2.18, 2.34],
|
269 |
+
"Compression Rate": [0.38, 0.593, "n/a", "n/a", "n/a", "n/a"],
|
270 |
+
"Verified": ['✓', '✓', '✓', '✓', '✓', '✓'],
|
271 |
+
},
|
272 |
+
}
|
273 |
+
|
274 |
+
def refresh():
|
275 |
+
# Add refresh logic
|
276 |
+
return
|
277 |
+
|
278 |
+
gr.HTML("<h2>KT Leaderboard - Can you beat Gzip on KT?</h2>")
|
279 |
+
for k,v in data.items():
|
280 |
+
with gr.Tab(k):
|
281 |
+
leaderboard_table_test = gr.Dataframe(
|
282 |
+
value=pd.DataFrame(data[k]),
|
283 |
+
interactive=False,
|
284 |
+
)
|
285 |
+
|
286 |
+
refresh_button = gr.Button("Refresh")
|
287 |
+
refresh_button.click(
|
288 |
+
refresh,
|
289 |
+
inputs=[],
|
290 |
+
outputs=[leaderboard_table_test],
|
291 |
+
)
|
292 |
+
|
293 |
+
with gr.Row():
|
294 |
+
with gr.Accordion("📙 Citation", open=False):
|
295 |
+
citation_text = """@inproceedings{
|
296 |
+
anonymous2024the,
|
297 |
+
title={The Ko{LM}ogorov Test: Compression by Code Generation},
|
298 |
+
author={Anonymous},
|
299 |
+
booktitle={Submitted to The Thirteenth International Conference on Learning Representations},
|
300 |
+
year={2024},
|
301 |
+
url={https://openreview.net/forum?id=C45YqeBDUM},
|
302 |
+
note={under review}
|
303 |
+
}"""
|
304 |
+
citation_button = gr.Textbox(
|
305 |
+
value=citation_text,
|
306 |
+
label="Citation",
|
307 |
+
lines=20,
|
308 |
+
elem_id="citation-button",
|
309 |
+
show_copy_button=True
|
310 |
+
)
|
311 |
+
|
312 |
+
gr.HTML(
|
313 |
+
"<p>We would like to thank the GAIA team for sharing the source code for their leaderboard which we used as a template and HuggingFace for hosting the leaderboard.</p>")
|
314 |
+
|
315 |
+
scheduler = BackgroundScheduler()
|
316 |
+
scheduler.add_job(restart_space, "interval", seconds=3600)
|
317 |
+
scheduler.start()
|
318 |
+
demo.launch(debug=True)
|
pyproject.toml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.ruff]
|
2 |
+
# Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
|
3 |
+
select = ["E", "F"]
|
4 |
+
ignore = ["E501"] # line too long (black is taking care of this)
|
5 |
+
line-length = 119
|
6 |
+
fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
|
7 |
+
|
8 |
+
[tool.isort]
|
9 |
+
profile = "black"
|
10 |
+
line_length = 119
|
11 |
+
|
12 |
+
[tool.black]
|
13 |
+
line-length = 119
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
APScheduler
|
2 |
+
black
|
3 |
+
datasets
|
4 |
+
gradio
|
5 |
+
gradio[oauth]
|
6 |
+
gradio_leaderboard==0.0.13
|
7 |
+
gradio_client
|
8 |
+
huggingface-hub>=0.18.0
|
9 |
+
matplotlib
|
10 |
+
numpy
|
11 |
+
pandas
|
12 |
+
python-dateutil
|
13 |
+
tqdm
|
14 |
+
transformers
|
15 |
+
tokenizers>=0.15.0
|
16 |
+
sentencepiece
|
src/about.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from enum import Enum
|
3 |
+
|
4 |
+
@dataclass
|
5 |
+
class Task:
|
6 |
+
benchmark: str
|
7 |
+
metric: str
|
8 |
+
col_name: str
|
9 |
+
|
10 |
+
|
11 |
+
# Select your tasks here
|
12 |
+
# ---------------------------------------------------
|
13 |
+
class Tasks(Enum):
|
14 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
15 |
+
task0 = Task("anli_r1", "acc", "ANLI")
|
16 |
+
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
17 |
+
|
18 |
+
NUM_FEWSHOT = 0 # Change with your few shot
|
19 |
+
# ---------------------------------------------------
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
# Your leaderboard name
|
24 |
+
TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
|
25 |
+
|
26 |
+
# What does your leaderboard evaluate?
|
27 |
+
INTRODUCTION_TEXT = """
|
28 |
+
Intro text
|
29 |
+
"""
|
30 |
+
|
31 |
+
# Which evaluations are you running? how can people reproduce what you have?
|
32 |
+
LLM_BENCHMARKS_TEXT = f"""
|
33 |
+
## How it works
|
34 |
+
|
35 |
+
## Reproducibility
|
36 |
+
To reproduce our results, here is the commands you can run:
|
37 |
+
|
38 |
+
"""
|
39 |
+
|
40 |
+
EVALUATION_QUEUE_TEXT = """
|
41 |
+
## Some good practices before submitting a model
|
42 |
+
|
43 |
+
### 1) Make sure you can load your model and tokenizer using AutoClasses:
|
44 |
+
```python
|
45 |
+
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
46 |
+
config = AutoConfig.from_pretrained("your model name", revision=revision)
|
47 |
+
model = AutoModel.from_pretrained("your model name", revision=revision)
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
49 |
+
```
|
50 |
+
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
51 |
+
|
52 |
+
Note: make sure your model is public!
|
53 |
+
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
|
54 |
+
|
55 |
+
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
|
56 |
+
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
|
57 |
+
|
58 |
+
### 3) Make sure your model has an open license!
|
59 |
+
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
|
60 |
+
|
61 |
+
### 4) Fill up your model card
|
62 |
+
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
|
63 |
+
|
64 |
+
## In case of model failure
|
65 |
+
If your model is displayed in the `FAILED` category, its execution stopped.
|
66 |
+
Make sure you have followed the above steps first.
|
67 |
+
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
68 |
+
"""
|
69 |
+
|
70 |
+
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
71 |
+
CITATION_BUTTON_TEXT = r"""
|
72 |
+
"""
|
src/display/css_html_js.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_css = """
|
2 |
+
|
3 |
+
.markdown-text {
|
4 |
+
font-size: 16px !important;
|
5 |
+
}
|
6 |
+
|
7 |
+
#models-to-add-text {
|
8 |
+
font-size: 18px !important;
|
9 |
+
}
|
10 |
+
|
11 |
+
#citation-button span {
|
12 |
+
font-size: 16px !important;
|
13 |
+
}
|
14 |
+
|
15 |
+
#citation-button textarea {
|
16 |
+
font-size: 16px !important;
|
17 |
+
}
|
18 |
+
|
19 |
+
#citation-button > label > button {
|
20 |
+
margin: 6px;
|
21 |
+
transform: scale(1.3);
|
22 |
+
}
|
23 |
+
|
24 |
+
#leaderboard-table {
|
25 |
+
margin-top: 15px
|
26 |
+
}
|
27 |
+
|
28 |
+
#leaderboard-table-lite {
|
29 |
+
margin-top: 15px
|
30 |
+
}
|
31 |
+
|
32 |
+
#search-bar-table-box > div:first-child {
|
33 |
+
background: none;
|
34 |
+
border: none;
|
35 |
+
}
|
36 |
+
|
37 |
+
#search-bar {
|
38 |
+
padding: 0px;
|
39 |
+
}
|
40 |
+
|
41 |
+
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
42 |
+
#leaderboard-table td:nth-child(2),
|
43 |
+
#leaderboard-table th:nth-child(2) {
|
44 |
+
max-width: 400px;
|
45 |
+
overflow: auto;
|
46 |
+
white-space: nowrap;
|
47 |
+
}
|
48 |
+
|
49 |
+
.tab-buttons button {
|
50 |
+
font-size: 20px;
|
51 |
+
}
|
52 |
+
|
53 |
+
#scale-logo {
|
54 |
+
border-style: none !important;
|
55 |
+
box-shadow: none;
|
56 |
+
display: block;
|
57 |
+
margin-left: auto;
|
58 |
+
margin-right: auto;
|
59 |
+
max-width: 600px;
|
60 |
+
}
|
61 |
+
|
62 |
+
#scale-logo .download {
|
63 |
+
display: none;
|
64 |
+
}
|
65 |
+
#filter_type{
|
66 |
+
border: 0;
|
67 |
+
padding-left: 0;
|
68 |
+
padding-top: 0;
|
69 |
+
}
|
70 |
+
#filter_type label {
|
71 |
+
display: flex;
|
72 |
+
}
|
73 |
+
#filter_type label > span{
|
74 |
+
margin-top: var(--spacing-lg);
|
75 |
+
margin-right: 0.5em;
|
76 |
+
}
|
77 |
+
#filter_type label > .wrap{
|
78 |
+
width: 103px;
|
79 |
+
}
|
80 |
+
#filter_type label > .wrap .wrap-inner{
|
81 |
+
padding: 2px;
|
82 |
+
}
|
83 |
+
#filter_type label > .wrap .wrap-inner input{
|
84 |
+
width: 1px
|
85 |
+
}
|
86 |
+
#filter-columns-type{
|
87 |
+
border:0;
|
88 |
+
padding:0.5;
|
89 |
+
}
|
90 |
+
#filter-columns-size{
|
91 |
+
border:0;
|
92 |
+
padding:0.5;
|
93 |
+
}
|
94 |
+
#box-filter > .form{
|
95 |
+
border: 0
|
96 |
+
}
|
97 |
+
"""
|
98 |
+
|
99 |
+
get_window_url_params = """
|
100 |
+
function(url_params) {
|
101 |
+
const params = new URLSearchParams(window.location.search);
|
102 |
+
url_params = Object.fromEntries(params);
|
103 |
+
return url_params;
|
104 |
+
}
|
105 |
+
"""
|
src/display/formatting.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def model_hyperlink(link, model_name):
|
2 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
3 |
+
|
4 |
+
|
5 |
+
def make_clickable_model(model_name):
|
6 |
+
link = f"https://huggingface.co/{model_name}"
|
7 |
+
return model_hyperlink(link, model_name)
|
8 |
+
|
9 |
+
|
10 |
+
def styled_error(error):
|
11 |
+
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
12 |
+
|
13 |
+
|
14 |
+
def styled_warning(warn):
|
15 |
+
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
16 |
+
|
17 |
+
|
18 |
+
def styled_message(message):
|
19 |
+
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|
20 |
+
|
21 |
+
|
22 |
+
def has_no_nan_values(df, columns):
|
23 |
+
return df[columns].notna().all(axis=1)
|
24 |
+
|
25 |
+
|
26 |
+
def has_nan_values(df, columns):
|
27 |
+
return df[columns].isna().any(axis=1)
|
src/display/utils.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, make_dataclass
|
2 |
+
from enum import Enum
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from src.about import Tasks
|
7 |
+
|
8 |
+
def fields(raw_class):
|
9 |
+
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
10 |
+
|
11 |
+
|
12 |
+
# These classes are for user facing column names,
|
13 |
+
# to avoid having to change them all around the code
|
14 |
+
# when a modif is needed
|
15 |
+
@dataclass
|
16 |
+
class ColumnContent:
|
17 |
+
name: str
|
18 |
+
type: str
|
19 |
+
displayed_by_default: bool
|
20 |
+
hidden: bool = False
|
21 |
+
never_hidden: bool = False
|
22 |
+
|
23 |
+
## Leaderboard columns
|
24 |
+
auto_eval_column_dict = []
|
25 |
+
# Init
|
26 |
+
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
+
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
+
#Scores
|
29 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
30 |
+
for task in Tasks:
|
31 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
32 |
+
# Model information
|
33 |
+
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
+
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
35 |
+
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
36 |
+
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
37 |
+
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
38 |
+
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
39 |
+
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
40 |
+
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
41 |
+
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
42 |
+
|
43 |
+
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
+
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
45 |
+
|
46 |
+
## For the queue columns in the submission tab
|
47 |
+
@dataclass(frozen=True)
|
48 |
+
class EvalQueueColumn: # Queue column
|
49 |
+
model = ColumnContent("model", "markdown", True)
|
50 |
+
revision = ColumnContent("revision", "str", True)
|
51 |
+
private = ColumnContent("private", "bool", True)
|
52 |
+
precision = ColumnContent("precision", "str", True)
|
53 |
+
weight_type = ColumnContent("weight_type", "str", "Original")
|
54 |
+
status = ColumnContent("status", "str", True)
|
55 |
+
|
56 |
+
## All the model information that we might need
|
57 |
+
@dataclass
|
58 |
+
class ModelDetails:
|
59 |
+
name: str
|
60 |
+
display_name: str = ""
|
61 |
+
symbol: str = "" # emoji
|
62 |
+
|
63 |
+
|
64 |
+
class ModelType(Enum):
|
65 |
+
PT = ModelDetails(name="pretrained", symbol="🟢")
|
66 |
+
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
67 |
+
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
68 |
+
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
69 |
+
Unknown = ModelDetails(name="", symbol="?")
|
70 |
+
|
71 |
+
def to_str(self, separator=" "):
|
72 |
+
return f"{self.value.symbol}{separator}{self.value.name}"
|
73 |
+
|
74 |
+
@staticmethod
|
75 |
+
def from_str(type):
|
76 |
+
if "fine-tuned" in type or "🔶" in type:
|
77 |
+
return ModelType.FT
|
78 |
+
if "pretrained" in type or "🟢" in type:
|
79 |
+
return ModelType.PT
|
80 |
+
if "RL-tuned" in type or "🟦" in type:
|
81 |
+
return ModelType.RL
|
82 |
+
if "instruction-tuned" in type or "⭕" in type:
|
83 |
+
return ModelType.IFT
|
84 |
+
return ModelType.Unknown
|
85 |
+
|
86 |
+
class WeightType(Enum):
|
87 |
+
Adapter = ModelDetails("Adapter")
|
88 |
+
Original = ModelDetails("Original")
|
89 |
+
Delta = ModelDetails("Delta")
|
90 |
+
|
91 |
+
class Precision(Enum):
|
92 |
+
float16 = ModelDetails("float16")
|
93 |
+
bfloat16 = ModelDetails("bfloat16")
|
94 |
+
Unknown = ModelDetails("?")
|
95 |
+
|
96 |
+
def from_str(precision):
|
97 |
+
if precision in ["torch.float16", "float16"]:
|
98 |
+
return Precision.float16
|
99 |
+
if precision in ["torch.bfloat16", "bfloat16"]:
|
100 |
+
return Precision.bfloat16
|
101 |
+
return Precision.Unknown
|
102 |
+
|
103 |
+
# Column selection
|
104 |
+
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
105 |
+
|
106 |
+
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
107 |
+
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
108 |
+
|
109 |
+
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
110 |
+
|
src/envs.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from huggingface_hub import HfApi
|
4 |
+
|
5 |
+
# Info to change for your repository
|
6 |
+
# ----------------------------------
|
7 |
+
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
8 |
+
|
9 |
+
OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
+
# ----------------------------------
|
11 |
+
|
12 |
+
REPO_ID = f"{OWNER}/leaderboard"
|
13 |
+
QUEUE_REPO = f"{OWNER}/requests"
|
14 |
+
RESULTS_REPO = f"{OWNER}/results"
|
15 |
+
|
16 |
+
# If you setup a cache later, just change HF_HOME
|
17 |
+
CACHE_PATH=os.getenv("HF_HOME", ".")
|
18 |
+
|
19 |
+
# Local caches
|
20 |
+
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
21 |
+
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
22 |
+
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
23 |
+
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
24 |
+
|
25 |
+
API = HfApi(token=TOKEN)
|
src/leaderboard/read_evals.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
import dateutil
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
from src.display.formatting import make_clickable_model
|
11 |
+
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
12 |
+
from src.submission.check_validity import is_model_on_hub
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class EvalResult:
|
17 |
+
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
18 |
+
"""
|
19 |
+
eval_name: str # org_model_precision (uid)
|
20 |
+
full_model: str # org/model (path on hub)
|
21 |
+
org: str
|
22 |
+
model: str
|
23 |
+
revision: str # commit hash, "" if main
|
24 |
+
results: dict
|
25 |
+
precision: Precision = Precision.Unknown
|
26 |
+
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
27 |
+
weight_type: WeightType = WeightType.Original # Original or Adapter
|
28 |
+
architecture: str = "Unknown"
|
29 |
+
license: str = "?"
|
30 |
+
likes: int = 0
|
31 |
+
num_params: int = 0
|
32 |
+
date: str = "" # submission date of request file
|
33 |
+
still_on_hub: bool = False
|
34 |
+
|
35 |
+
@classmethod
|
36 |
+
def init_from_json_file(self, json_filepath):
|
37 |
+
"""Inits the result from the specific model result file"""
|
38 |
+
with open(json_filepath) as fp:
|
39 |
+
data = json.load(fp)
|
40 |
+
|
41 |
+
config = data.get("config")
|
42 |
+
|
43 |
+
# Precision
|
44 |
+
precision = Precision.from_str(config.get("model_dtype"))
|
45 |
+
|
46 |
+
# Get model and org
|
47 |
+
org_and_model = config.get("model_name", config.get("model_args", None))
|
48 |
+
org_and_model = org_and_model.split("/", 1)
|
49 |
+
|
50 |
+
if len(org_and_model) == 1:
|
51 |
+
org = None
|
52 |
+
model = org_and_model[0]
|
53 |
+
result_key = f"{model}_{precision.value.name}"
|
54 |
+
else:
|
55 |
+
org = org_and_model[0]
|
56 |
+
model = org_and_model[1]
|
57 |
+
result_key = f"{org}_{model}_{precision.value.name}"
|
58 |
+
full_model = "/".join(org_and_model)
|
59 |
+
|
60 |
+
still_on_hub, _, model_config = is_model_on_hub(
|
61 |
+
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
62 |
+
)
|
63 |
+
architecture = "?"
|
64 |
+
if model_config is not None:
|
65 |
+
architectures = getattr(model_config, "architectures", None)
|
66 |
+
if architectures:
|
67 |
+
architecture = ";".join(architectures)
|
68 |
+
|
69 |
+
# Extract results available in this file (some results are split in several files)
|
70 |
+
results = {}
|
71 |
+
for task in Tasks:
|
72 |
+
task = task.value
|
73 |
+
|
74 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
75 |
+
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
76 |
+
if accs.size == 0 or any([acc is None for acc in accs]):
|
77 |
+
continue
|
78 |
+
|
79 |
+
mean_acc = np.mean(accs) * 100.0
|
80 |
+
results[task.benchmark] = mean_acc
|
81 |
+
|
82 |
+
return self(
|
83 |
+
eval_name=result_key,
|
84 |
+
full_model=full_model,
|
85 |
+
org=org,
|
86 |
+
model=model,
|
87 |
+
results=results,
|
88 |
+
precision=precision,
|
89 |
+
revision= config.get("model_sha", ""),
|
90 |
+
still_on_hub=still_on_hub,
|
91 |
+
architecture=architecture
|
92 |
+
)
|
93 |
+
|
94 |
+
def update_with_request_file(self, requests_path):
|
95 |
+
"""Finds the relevant request file for the current model and updates info with it"""
|
96 |
+
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
97 |
+
|
98 |
+
try:
|
99 |
+
with open(request_file, "r") as f:
|
100 |
+
request = json.load(f)
|
101 |
+
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
102 |
+
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
103 |
+
self.license = request.get("license", "?")
|
104 |
+
self.likes = request.get("likes", 0)
|
105 |
+
self.num_params = request.get("params", 0)
|
106 |
+
self.date = request.get("submitted_time", "")
|
107 |
+
except Exception:
|
108 |
+
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
|
109 |
+
|
110 |
+
def to_dict(self):
|
111 |
+
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
112 |
+
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
113 |
+
data_dict = {
|
114 |
+
"eval_name": self.eval_name, # not a column, just a save name,
|
115 |
+
AutoEvalColumn.precision.name: self.precision.value.name,
|
116 |
+
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
117 |
+
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
118 |
+
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
119 |
+
AutoEvalColumn.architecture.name: self.architecture,
|
120 |
+
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
121 |
+
AutoEvalColumn.revision.name: self.revision,
|
122 |
+
AutoEvalColumn.average.name: average,
|
123 |
+
AutoEvalColumn.license.name: self.license,
|
124 |
+
AutoEvalColumn.likes.name: self.likes,
|
125 |
+
AutoEvalColumn.params.name: self.num_params,
|
126 |
+
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
127 |
+
}
|
128 |
+
|
129 |
+
for task in Tasks:
|
130 |
+
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
131 |
+
|
132 |
+
return data_dict
|
133 |
+
|
134 |
+
|
135 |
+
def get_request_file_for_model(requests_path, model_name, precision):
|
136 |
+
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
137 |
+
request_files = os.path.join(
|
138 |
+
requests_path,
|
139 |
+
f"{model_name}_eval_request_*.json",
|
140 |
+
)
|
141 |
+
request_files = glob.glob(request_files)
|
142 |
+
|
143 |
+
# Select correct request file (precision)
|
144 |
+
request_file = ""
|
145 |
+
request_files = sorted(request_files, reverse=True)
|
146 |
+
for tmp_request_file in request_files:
|
147 |
+
with open(tmp_request_file, "r") as f:
|
148 |
+
req_content = json.load(f)
|
149 |
+
if (
|
150 |
+
req_content["status"] in ["FINISHED"]
|
151 |
+
and req_content["precision"] == precision.split(".")[-1]
|
152 |
+
):
|
153 |
+
request_file = tmp_request_file
|
154 |
+
return request_file
|
155 |
+
|
156 |
+
|
157 |
+
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
158 |
+
"""From the path of the results folder root, extract all needed info for results"""
|
159 |
+
model_result_filepaths = []
|
160 |
+
|
161 |
+
for root, _, files in os.walk(results_path):
|
162 |
+
# We should only have json files in model results
|
163 |
+
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
164 |
+
continue
|
165 |
+
|
166 |
+
# Sort the files by date
|
167 |
+
try:
|
168 |
+
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
169 |
+
except dateutil.parser._parser.ParserError:
|
170 |
+
files = [files[-1]]
|
171 |
+
|
172 |
+
for file in files:
|
173 |
+
model_result_filepaths.append(os.path.join(root, file))
|
174 |
+
|
175 |
+
eval_results = {}
|
176 |
+
for model_result_filepath in model_result_filepaths:
|
177 |
+
# Creation of result
|
178 |
+
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
179 |
+
eval_result.update_with_request_file(requests_path)
|
180 |
+
|
181 |
+
# Store results of same eval together
|
182 |
+
eval_name = eval_result.eval_name
|
183 |
+
if eval_name in eval_results.keys():
|
184 |
+
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
185 |
+
else:
|
186 |
+
eval_results[eval_name] = eval_result
|
187 |
+
|
188 |
+
results = []
|
189 |
+
for v in eval_results.values():
|
190 |
+
try:
|
191 |
+
v.to_dict() # we test if the dict version is complete
|
192 |
+
results.append(v)
|
193 |
+
except KeyError: # not all eval values present
|
194 |
+
continue
|
195 |
+
|
196 |
+
return results
|
src/populate.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
+
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
8 |
+
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
+
|
10 |
+
|
11 |
+
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
+
"""Creates a dataframe from all the individual experiment results"""
|
13 |
+
raw_data = get_raw_eval_results(results_path, requests_path)
|
14 |
+
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
+
|
16 |
+
df = pd.DataFrame.from_records(all_data_json)
|
17 |
+
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
18 |
+
df = df[cols].round(decimals=2)
|
19 |
+
|
20 |
+
# filter out if any of the benchmarks have not been produced
|
21 |
+
df = df[has_no_nan_values(df, benchmark_cols)]
|
22 |
+
return df
|
23 |
+
|
24 |
+
|
25 |
+
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
26 |
+
"""Creates the different dataframes for the evaluation queues requestes"""
|
27 |
+
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
28 |
+
all_evals = []
|
29 |
+
|
30 |
+
for entry in entries:
|
31 |
+
if ".json" in entry:
|
32 |
+
file_path = os.path.join(save_path, entry)
|
33 |
+
with open(file_path) as fp:
|
34 |
+
data = json.load(fp)
|
35 |
+
|
36 |
+
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
37 |
+
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
38 |
+
|
39 |
+
all_evals.append(data)
|
40 |
+
elif ".md" not in entry:
|
41 |
+
# this is a folder
|
42 |
+
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
|
43 |
+
for sub_entry in sub_entries:
|
44 |
+
file_path = os.path.join(save_path, entry, sub_entry)
|
45 |
+
with open(file_path) as fp:
|
46 |
+
data = json.load(fp)
|
47 |
+
|
48 |
+
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
49 |
+
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
50 |
+
all_evals.append(data)
|
51 |
+
|
52 |
+
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
53 |
+
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
54 |
+
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
55 |
+
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
56 |
+
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
57 |
+
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
58 |
+
return df_finished[cols], df_running[cols], df_pending[cols]
|
src/submission/check_validity.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from collections import defaultdict
|
5 |
+
from datetime import datetime, timedelta, timezone
|
6 |
+
|
7 |
+
import huggingface_hub
|
8 |
+
from huggingface_hub import ModelCard
|
9 |
+
from huggingface_hub.hf_api import ModelInfo
|
10 |
+
from transformers import AutoConfig
|
11 |
+
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
12 |
+
|
13 |
+
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
14 |
+
"""Checks if the model card and license exist and have been filled"""
|
15 |
+
try:
|
16 |
+
card = ModelCard.load(repo_id)
|
17 |
+
except huggingface_hub.utils.EntryNotFoundError:
|
18 |
+
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
19 |
+
|
20 |
+
# Enforce license metadata
|
21 |
+
if card.data.license is None:
|
22 |
+
if not ("license_name" in card.data and "license_link" in card.data):
|
23 |
+
return False, (
|
24 |
+
"License not found. Please add a license to your model card using the `license` metadata or a"
|
25 |
+
" `license_name`/`license_link` pair."
|
26 |
+
)
|
27 |
+
|
28 |
+
# Enforce card content
|
29 |
+
if len(card.text) < 200:
|
30 |
+
return False, "Please add a description to your model card, it is too short."
|
31 |
+
|
32 |
+
return True, ""
|
33 |
+
|
34 |
+
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
|
35 |
+
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
36 |
+
try:
|
37 |
+
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
38 |
+
if test_tokenizer:
|
39 |
+
try:
|
40 |
+
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
41 |
+
except ValueError as e:
|
42 |
+
return (
|
43 |
+
False,
|
44 |
+
f"uses a tokenizer which is not in a transformers release: {e}",
|
45 |
+
None
|
46 |
+
)
|
47 |
+
except Exception as e:
|
48 |
+
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
49 |
+
return True, None, config
|
50 |
+
|
51 |
+
except ValueError:
|
52 |
+
return (
|
53 |
+
False,
|
54 |
+
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
55 |
+
None
|
56 |
+
)
|
57 |
+
|
58 |
+
except Exception as e:
|
59 |
+
return False, "was not found on hub!", None
|
60 |
+
|
61 |
+
|
62 |
+
def get_model_size(model_info: ModelInfo, precision: str):
|
63 |
+
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
64 |
+
try:
|
65 |
+
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
66 |
+
except (AttributeError, TypeError):
|
67 |
+
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
68 |
+
|
69 |
+
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
70 |
+
model_size = size_factor * model_size
|
71 |
+
return model_size
|
72 |
+
|
73 |
+
def get_model_arch(model_info: ModelInfo):
|
74 |
+
"""Gets the model architecture from the configuration"""
|
75 |
+
return model_info.config.get("architectures", "Unknown")
|
76 |
+
|
77 |
+
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
78 |
+
"""Gather a list of already submitted models to avoid duplicates"""
|
79 |
+
depth = 1
|
80 |
+
file_names = []
|
81 |
+
users_to_submission_dates = defaultdict(list)
|
82 |
+
|
83 |
+
for root, _, files in os.walk(requested_models_dir):
|
84 |
+
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
85 |
+
if current_depth == depth:
|
86 |
+
for file in files:
|
87 |
+
if not file.endswith(".json"):
|
88 |
+
continue
|
89 |
+
with open(os.path.join(root, file), "r") as f:
|
90 |
+
info = json.load(f)
|
91 |
+
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
|
92 |
+
|
93 |
+
# Select organisation
|
94 |
+
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
95 |
+
continue
|
96 |
+
organisation, _ = info["model"].split("/")
|
97 |
+
users_to_submission_dates[organisation].append(info["submitted_time"])
|
98 |
+
|
99 |
+
return set(file_names), users_to_submission_dates
|
src/submission/submit.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from datetime import datetime, timezone
|
4 |
+
|
5 |
+
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
+
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
+
from src.submission.check_validity import (
|
8 |
+
already_submitted_models,
|
9 |
+
check_model_card,
|
10 |
+
get_model_size,
|
11 |
+
is_model_on_hub,
|
12 |
+
)
|
13 |
+
|
14 |
+
REQUESTED_MODELS = None
|
15 |
+
USERS_TO_SUBMISSION_DATES = None
|
16 |
+
|
17 |
+
def add_new_eval(
|
18 |
+
model: str,
|
19 |
+
base_model: str,
|
20 |
+
revision: str,
|
21 |
+
precision: str,
|
22 |
+
weight_type: str,
|
23 |
+
model_type: str,
|
24 |
+
):
|
25 |
+
global REQUESTED_MODELS
|
26 |
+
global USERS_TO_SUBMISSION_DATES
|
27 |
+
if not REQUESTED_MODELS:
|
28 |
+
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
29 |
+
|
30 |
+
user_name = ""
|
31 |
+
model_path = model
|
32 |
+
if "/" in model:
|
33 |
+
user_name = model.split("/")[0]
|
34 |
+
model_path = model.split("/")[1]
|
35 |
+
|
36 |
+
precision = precision.split(" ")[0]
|
37 |
+
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
38 |
+
|
39 |
+
if model_type is None or model_type == "":
|
40 |
+
return styled_error("Please select a model type.")
|
41 |
+
|
42 |
+
# Does the model actually exist?
|
43 |
+
if revision == "":
|
44 |
+
revision = "main"
|
45 |
+
|
46 |
+
# Is the model on the hub?
|
47 |
+
if weight_type in ["Delta", "Adapter"]:
|
48 |
+
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
49 |
+
if not base_model_on_hub:
|
50 |
+
return styled_error(f'Base model "{base_model}" {error}')
|
51 |
+
|
52 |
+
if not weight_type == "Adapter":
|
53 |
+
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
54 |
+
if not model_on_hub:
|
55 |
+
return styled_error(f'Model "{model}" {error}')
|
56 |
+
|
57 |
+
# Is the model info correctly filled?
|
58 |
+
try:
|
59 |
+
model_info = API.model_info(repo_id=model, revision=revision)
|
60 |
+
except Exception:
|
61 |
+
return styled_error("Could not get your model information. Please fill it up properly.")
|
62 |
+
|
63 |
+
model_size = get_model_size(model_info=model_info, precision=precision)
|
64 |
+
|
65 |
+
# Were the model card and license filled?
|
66 |
+
try:
|
67 |
+
license = model_info.cardData["license"]
|
68 |
+
except Exception:
|
69 |
+
return styled_error("Please select a license for your model")
|
70 |
+
|
71 |
+
modelcard_OK, error_msg = check_model_card(model)
|
72 |
+
if not modelcard_OK:
|
73 |
+
return styled_error(error_msg)
|
74 |
+
|
75 |
+
# Seems good, creating the eval
|
76 |
+
print("Adding new eval")
|
77 |
+
|
78 |
+
eval_entry = {
|
79 |
+
"model": model,
|
80 |
+
"base_model": base_model,
|
81 |
+
"revision": revision,
|
82 |
+
"precision": precision,
|
83 |
+
"weight_type": weight_type,
|
84 |
+
"status": "PENDING",
|
85 |
+
"submitted_time": current_time,
|
86 |
+
"model_type": model_type,
|
87 |
+
"likes": model_info.likes,
|
88 |
+
"params": model_size,
|
89 |
+
"license": license,
|
90 |
+
"private": False,
|
91 |
+
}
|
92 |
+
|
93 |
+
# Check for duplicate submission
|
94 |
+
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
95 |
+
return styled_warning("This model has been already submitted.")
|
96 |
+
|
97 |
+
print("Creating eval file")
|
98 |
+
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
99 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
100 |
+
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
101 |
+
|
102 |
+
with open(out_path, "w") as f:
|
103 |
+
f.write(json.dumps(eval_entry))
|
104 |
+
|
105 |
+
print("Uploading eval file")
|
106 |
+
API.upload_file(
|
107 |
+
path_or_fileobj=out_path,
|
108 |
+
path_in_repo=out_path.split("eval-queue/")[1],
|
109 |
+
repo_id=QUEUE_REPO,
|
110 |
+
repo_type="dataset",
|
111 |
+
commit_message=f"Add {model} to eval queue",
|
112 |
+
)
|
113 |
+
|
114 |
+
# Remove the local file
|
115 |
+
os.remove(out_path)
|
116 |
+
|
117 |
+
return styled_message(
|
118 |
+
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
119 |
+
)
|