Knight-coderr
commited on
Upload 3 files
Browse files- app.py +101 -0
- best_model.pkl +3 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import mlflow
|
5 |
+
from sklearn.preprocessing import LabelEncoder
|
6 |
+
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
7 |
+
import streamlit as st
|
8 |
+
import numpy as np
|
9 |
+
import joblib
|
10 |
+
|
11 |
+
url = './archive/ds_salaries.csv' # replace with the actual path
|
12 |
+
|
13 |
+
# Load the dataset
|
14 |
+
data = pd.read_csv(url)
|
15 |
+
|
16 |
+
data = data.drop('Unnamed: 0', axis=1)
|
17 |
+
|
18 |
+
|
19 |
+
# Fill missing values if any
|
20 |
+
data = data.fillna(method='ffill')
|
21 |
+
|
22 |
+
# Encode categorical variables
|
23 |
+
label_encoders = {}
|
24 |
+
categorical_columns = ['experience_level', 'employment_type', 'job_title', 'salary_currency', 'employee_residence', 'company_location', 'company_size']
|
25 |
+
|
26 |
+
for col in categorical_columns:
|
27 |
+
le = LabelEncoder()
|
28 |
+
data[col] = le.fit_transform(data[col])
|
29 |
+
label_encoders[col] = le
|
30 |
+
|
31 |
+
from sklearn.model_selection import train_test_split
|
32 |
+
|
33 |
+
# Define features and target variable
|
34 |
+
X = data.drop('salary_in_usd', axis=1)
|
35 |
+
y = data['salary_in_usd']
|
36 |
+
|
37 |
+
# Split the data into training and testing sets
|
38 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
39 |
+
|
40 |
+
print(f"Training set size: {X_train.shape[0]}")
|
41 |
+
print(f"Testing set size: {X_test.shape[0]}")
|
42 |
+
|
43 |
+
|
44 |
+
# Load the best model
|
45 |
+
# best_model = mlflow.sklearn.load_model("runs:/2f24d11653334bfc8611ef5edbe52bfd/model")
|
46 |
+
|
47 |
+
# Load the best model
|
48 |
+
best_model = joblib.load('best_model.pkl')
|
49 |
+
|
50 |
+
# Streamlit app
|
51 |
+
st.title("Salary Prediction App")
|
52 |
+
|
53 |
+
# Input features
|
54 |
+
work_year = st.number_input('Work Year', min_value=2020, max_value=2024, step=1)
|
55 |
+
experience_level = st.selectbox("Experience Level", label_encoders['experience_level'].classes_)
|
56 |
+
employment_type = st.selectbox("Employment Type", label_encoders['employment_type'].classes_)
|
57 |
+
job_title = st.selectbox("Job Title", label_encoders['job_title'].classes_)
|
58 |
+
salary = st.number_input('Salary', min_value=0)
|
59 |
+
salary_currency = st.selectbox("Salary Currency", label_encoders['salary_currency'].classes_)
|
60 |
+
employee_residence = st.selectbox("Employee Residence", label_encoders['employee_residence'].classes_)
|
61 |
+
remote_ratio = st.slider("Remote Ratio", 0, 100)
|
62 |
+
company_location = st.selectbox("Company Location", label_encoders['company_location'].classes_)
|
63 |
+
company_size = st.selectbox("Company Size", label_encoders['company_size'].classes_)
|
64 |
+
|
65 |
+
|
66 |
+
def predict_salary():
|
67 |
+
# Encode input features
|
68 |
+
encoded_experience_level = label_encoders['experience_level'].transform([experience_level])[0]
|
69 |
+
encoded_employment_type = label_encoders['employment_type'].transform([employment_type])[0]
|
70 |
+
encoded_job_title = label_encoders['job_title'].transform([job_title])[0]
|
71 |
+
encoded_salary_currency = label_encoders['salary_currency'].transform([salary_currency])[0]
|
72 |
+
encoded_employee_residence = label_encoders['employee_residence'].transform([employee_residence])[0]
|
73 |
+
encoded_company_location = label_encoders['company_location'].transform([company_location])[0]
|
74 |
+
encoded_company_size = label_encoders['company_size'].transform([company_size])[0]
|
75 |
+
|
76 |
+
# Create input array matching training data format
|
77 |
+
input_features = np.array([
|
78 |
+
work_year,
|
79 |
+
encoded_experience_level,
|
80 |
+
encoded_employment_type,
|
81 |
+
encoded_job_title,
|
82 |
+
salary,
|
83 |
+
encoded_salary_currency,
|
84 |
+
encoded_employee_residence,
|
85 |
+
remote_ratio,
|
86 |
+
encoded_company_location,
|
87 |
+
encoded_company_size,
|
88 |
+
]).reshape(1, -1)
|
89 |
+
# Make prediction
|
90 |
+
predicted_salary = best_model.predict(input_features)[0]
|
91 |
+
return predicted_salary
|
92 |
+
|
93 |
+
# Button to trigger prediction
|
94 |
+
if st.button("Predict Salary"):
|
95 |
+
predicted_salary = predict_salary()
|
96 |
+
st.write(f"Predicted Salary (in USD): {predicted_salary}")
|
97 |
+
|
98 |
+
# Display model performance metrics
|
99 |
+
st.write(f"RMSE: {mean_squared_error(y_test, best_model.predict(X_test), squared=False)}")
|
100 |
+
st.write(f"MAE: {mean_absolute_error(y_test, best_model.predict(X_test))}")
|
101 |
+
st.write(f"R²: {r2_score(y_test, best_model.predict(X_test))}")
|
best_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fd0785ba695a9dbc50a84b1b3a4e38289f9aabb6bd39a50196349c6179a1c58
|
3 |
+
size 5834256
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mlflow==2.13.2
|
2 |
+
cloudpickle==3.0.0
|
3 |
+
numpy==1.24.4
|
4 |
+
packaging==24.1
|
5 |
+
psutil==5.9.8
|
6 |
+
pyyaml==6.0.1
|
7 |
+
scikit-learn==1.3.2
|
8 |
+
scipy==1.10.1
|