Spaces:
Runtime error
Runtime error
from dataclasses import dataclass | |
from typing import Optional, Dict | |
import torch | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models import ModelMixin | |
from diffusers.utils import BaseOutput | |
from diffusers.utils.import_utils import is_xformers_available | |
from einops import rearrange, repeat | |
from torch import nn | |
from .attention import TemporalBasicTransformerBlock, ResidualTemporalBasicTransformerBlock | |
class Transformer3DModelOutput(BaseOutput): | |
sample: torch.FloatTensor | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
else: | |
xformers = None | |
class Transformer3DModel(ModelMixin, ConfigMixin): | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
unet_use_cross_frame_attention=None, | |
unet_use_temporal_attention=None, | |
): | |
super().__init__() | |
self.use_linear_projection = use_linear_projection | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
# Define input layers | |
self.in_channels = in_channels | |
self.norm = torch.nn.GroupNorm( | |
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
if use_linear_projection: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_in = nn.Conv2d( | |
in_channels, inner_dim, kernel_size=1, stride=1, padding=0 | |
) | |
# Define transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
TemporalBasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
unet_use_temporal_attention=unet_use_temporal_attention, | |
) | |
for d in range(num_layers) | |
] | |
) | |
# 4. Define output layers | |
if use_linear_projection: | |
self.proj_out = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_out = nn.Conv2d( | |
inner_dim, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
timestep=None, | |
return_dict: bool = True, | |
): | |
# Input | |
assert ( | |
hidden_states.dim() == 5 | |
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
video_length = hidden_states.shape[2] | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
if encoder_hidden_states.shape[0] != hidden_states.shape[0]: | |
encoder_hidden_states = repeat( | |
encoder_hidden_states, "b n c -> (b f) n c", f=video_length | |
) | |
batch, channel, height, weight = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
if not self.use_linear_projection: | |
hidden_states = self.proj_in(hidden_states) | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( | |
batch, height * weight, inner_dim | |
) | |
else: | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( | |
batch, height * weight, inner_dim | |
) | |
hidden_states = self.proj_in(hidden_states) | |
# Blocks | |
for i, block in enumerate(self.transformer_blocks): | |
hidden_states = block( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
timestep=timestep, | |
video_length=video_length, | |
) | |
# Output | |
if not self.use_linear_projection: | |
hidden_states = ( | |
hidden_states.reshape(batch, height, weight, inner_dim) | |
.permute(0, 3, 1, 2) | |
.contiguous() | |
) | |
hidden_states = self.proj_out(hidden_states) | |
else: | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = ( | |
hidden_states.reshape(batch, height, weight, inner_dim) | |
.permute(0, 3, 1, 2) | |
.contiguous() | |
) | |
output = hidden_states + residual | |
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) | |
if not return_dict: | |
return (output,) | |
return Transformer3DModelOutput(sample=output) | |