Spaces:
Runtime error
Runtime error
File size: 7,742 Bytes
2e4e201 5ef3823 3a0bff5 2e4e201 3a0bff5 2e4e201 3a0bff5 2e4e201 3a0bff5 537435d 2e4e201 2de857a 2e4e201 8749423 2e4e201 3a0bff5 2e4e201 3a0bff5 2e4e201 3a0bff5 2e4e201 3a0bff5 2e4e201 3a0bff5 2e4e201 3a0bff5 2e4e201 3a0bff5 2e4e201 3a0bff5 2e4e201 3a0bff5 2e4e201 3a0bff5 2e4e201 2de857a 2e4e201 2de857a 2e4e201 2de857a 2e4e201 537435d 2e4e201 537435d 2e4e201 537435d 2e4e201 537435d 2e4e201 2de857a 2e4e201 2de857a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import os
import shutil
import ffmpeg
from datetime import datetime
from pathlib import Path
import numpy as np
import cv2
import torch
import spaces
from diffusers import AutoencoderKL, DDIMScheduler
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames, save_videos_grid
from src.utils.mp_utils import LMKExtractor
from src.utils.draw_util import FaceMeshVisualizer
from src.utils.pose_util import project_points_with_trans, matrix_to_euler_and_translation, euler_and_translation_to_matrix
from src.audio2vid import smooth_pose_seq
from src.utils.crop_face_single import crop_face
# @spaces.GPU(duration=150)
def video2video(ref_img, source_video, size=512, steps=25, length=150, seed=42):
cfg = 3.5
config = OmegaConf.load('./configs/prompts/animation_facereenac.yaml')
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to("cuda", dtype=weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device="cuda")
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device="cuda")
pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention
image_enc = CLIPVisionModelWithProjection.from_pretrained(
config.image_encoder_path
).to(dtype=weight_dtype, device="cuda")
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
generator = torch.manual_seed(seed)
width, height = size, size
# load pretrained weights
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
torch.load(config.pose_guider_path, map_location="cpu"),
)
pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
pipe = pipe.to("cuda", dtype=weight_dtype)
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"
save_dir = Path(f"output/{date_str}/{save_dir_name}")
save_dir.mkdir(exist_ok=True, parents=True)
lmk_extractor = LMKExtractor()
vis = FaceMeshVisualizer(forehead_edge=False)
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
ref_image_np = crop_face(ref_image_np, lmk_extractor)
if ref_image_np is None:
return None, Image.fromarray(ref_img)
ref_image_np = cv2.resize(ref_image_np, (size, size))
ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
face_result = lmk_extractor(ref_image_np)
if face_result is None:
return None, ref_image_pil
lmks = face_result['lmks'].astype(np.float32)
ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
source_images = read_frames(source_video)
src_fps = get_fps(source_video)
pose_transform = transforms.Compose(
[transforms.Resize((height, width)), transforms.ToTensor()]
)
step = 1
if src_fps == 60:
src_fps = 30
step = 2
pose_trans_list = []
verts_list = []
bs_list = []
src_tensor_list = []
args_L = len(source_images) if length==0 or length*step > len(source_images) else length*step
args_L = min(args_L, 300*step)
for src_image_pil in source_images[: args_L: step]:
src_tensor_list.append(pose_transform(src_image_pil))
src_img_np = cv2.cvtColor(np.array(src_image_pil), cv2.COLOR_RGB2BGR)
frame_height, frame_width, _ = src_img_np.shape
src_img_result = lmk_extractor(src_img_np)
if src_img_result is None:
break
pose_trans_list.append(src_img_result['trans_mat'])
verts_list.append(src_img_result['lmks3d'])
bs_list.append(src_img_result['bs'])
# pose_arr = np.array(pose_trans_list)
trans_mat_arr = np.array(pose_trans_list)
verts_arr = np.array(verts_list)
bs_arr = np.array(bs_list)
min_bs_idx = np.argmin(bs_arr.sum(1))
# compute delta pose
pose_arr = np.zeros([trans_mat_arr.shape[0], 6])
for i in range(pose_arr.shape[0]):
euler_angles, translation_vector = matrix_to_euler_and_translation(trans_mat_arr[i]) # real pose of source
pose_arr[i, :3] = euler_angles
pose_arr[i, 3:6] = translation_vector
init_tran_vec = face_result['trans_mat'][:3, 3] # init translation of tgt
pose_arr[:, 3:6] = pose_arr[:, 3:6] - pose_arr[0, 3:6] + init_tran_vec # (relative translation of source) + (init translation of tgt)
pose_arr_smooth = smooth_pose_seq(pose_arr, window_size=3)
pose_mat_smooth = [euler_and_translation_to_matrix(pose_arr_smooth[i][:3], pose_arr_smooth[i][3:6]) for i in range(pose_arr_smooth.shape[0])]
pose_mat_smooth = np.array(pose_mat_smooth)
# face retarget
verts_arr = verts_arr - verts_arr[min_bs_idx] + face_result['lmks3d']
# project 3D mesh to 2D landmark
projected_vertices = project_points_with_trans(verts_arr, pose_mat_smooth, [frame_height, frame_width])
pose_list = []
for i, verts in enumerate(projected_vertices):
lmk_img = vis.draw_landmarks((frame_width, frame_height), verts, normed=False)
pose_image_np = cv2.resize(lmk_img, (width, height))
pose_list.append(pose_image_np)
pose_list = np.array(pose_list)
video_length = len(pose_list)
video = pipe(
ref_image_pil,
pose_list,
ref_pose,
width,
height,
video_length,
steps,
cfg,
generator=generator,
).videos
save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
save_videos_grid(
video,
save_path,
n_rows=1,
fps=src_fps,
)
audio_output = f'{save_dir}/audio_from_video.aac'
# extract audio
try:
ffmpeg.input(source_video).output(audio_output, acodec='copy').run()
# merge audio and video
stream = ffmpeg.input(save_path)
audio = ffmpeg.input(audio_output)
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
os.remove(save_path)
os.remove(audio_output)
except:
shutil.move(
save_path,
save_path.replace('_noaudio.mp4', '.mp4')
)
return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil
|