Spaces:
Runtime error
Runtime error
File size: 9,275 Bytes
2e4e201 8749423 2e4e201 8749423 2e4e201 8749423 2e4e201 8749423 3a0bff5 8749423 2e4e201 3a0bff5 2e4e201 8749423 2e4e201 8749423 2e4e201 8749423 2e4e201 8749423 2de857a 8749423 2e4e201 8749423 2e4e201 8749423 2e4e201 8749423 2e4e201 8749423 2e4e201 8749423 2e4e201 8749423 2e4e201 8749423 2e4e201 8749423 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
import ffmpeg
from datetime import datetime
from pathlib import Path
import numpy as np
import cv2
# import torch
# import spaces
from scipy.spatial.transform import Rotation as R
from scipy.interpolate import interp1d
# from diffusers import AutoencoderKL, DDIMScheduler
# from einops import repeat
# from omegaconf import OmegaConf
# from PIL import Image
# from torchvision import transforms
# from transformers import CLIPVisionModelWithProjection
# from src.models.pose_guider import PoseGuider
# from src.models.unet_2d_condition import UNet2DConditionModel
# from src.models.unet_3d import UNet3DConditionModel
# from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
# from src.utils.util import save_videos_grid
# from src.audio_models.model import Audio2MeshModel
# from src.utils.audio_util import prepare_audio_feature
from src.utils.mp_utils import LMKExtractor
# from src.utils.draw_util import FaceMeshVisualizer
# from src.utils.pose_util import project_points
# from src.utils.crop_face_single import crop_face
def matrix_to_euler_and_translation(matrix):
rotation_matrix = matrix[:3, :3]
translation_vector = matrix[:3, 3]
rotation = R.from_matrix(rotation_matrix)
euler_angles = rotation.as_euler('xyz', degrees=True)
return euler_angles, translation_vector
def smooth_pose_seq(pose_seq, window_size=5):
smoothed_pose_seq = np.zeros_like(pose_seq)
for i in range(len(pose_seq)):
start = max(0, i - window_size // 2)
end = min(len(pose_seq), i + window_size // 2 + 1)
smoothed_pose_seq[i] = np.mean(pose_seq[start:end], axis=0)
return smoothed_pose_seq
def get_headpose_temp(input_video):
lmk_extractor = LMKExtractor()
cap = cv2.VideoCapture(input_video)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
trans_mat_list = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
result = lmk_extractor(frame)
trans_mat_list.append(result['trans_mat'].astype(np.float32))
cap.release()
trans_mat_arr = np.array(trans_mat_list)
# compute delta pose
trans_mat_inv_frame_0 = np.linalg.inv(trans_mat_arr[0])
pose_arr = np.zeros([trans_mat_arr.shape[0], 6])
for i in range(pose_arr.shape[0]):
pose_mat = trans_mat_inv_frame_0 @ trans_mat_arr[i]
euler_angles, translation_vector = matrix_to_euler_and_translation(pose_mat)
pose_arr[i, :3] = euler_angles
pose_arr[i, 3:6] = translation_vector
# interpolate to 30 fps
new_fps = 30
old_time = np.linspace(0, total_frames / fps, total_frames)
new_time = np.linspace(0, total_frames / fps, int(total_frames * new_fps / fps))
pose_arr_interp = np.zeros((len(new_time), 6))
for i in range(6):
interp_func = interp1d(old_time, pose_arr[:, i])
pose_arr_interp[:, i] = interp_func(new_time)
pose_arr_smooth = smooth_pose_seq(pose_arr_interp)
return pose_arr_smooth
# @spaces.GPU(duration=150)
# def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, length=150, seed=42):
# fps = 30
# cfg = 3.5
# config = OmegaConf.load('./configs/prompts/animation_audio.yaml')
# if config.weight_dtype == "fp16":
# weight_dtype = torch.float16
# else:
# weight_dtype = torch.float32
# audio_infer_config = OmegaConf.load(config.audio_inference_config)
# # prepare model
# a2m_model = Audio2MeshModel(audio_infer_config['a2m_model'])
# a2m_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2m_ckpt'], map_location="cpu"), strict=False)
# a2m_model.cuda().eval()
# vae = AutoencoderKL.from_pretrained(
# config.pretrained_vae_path,
# ).to("cuda", dtype=weight_dtype)
# reference_unet = UNet2DConditionModel.from_pretrained(
# config.pretrained_base_model_path,
# subfolder="unet",
# ).to(dtype=weight_dtype, device="cuda")
# inference_config_path = config.inference_config
# infer_config = OmegaConf.load(inference_config_path)
# denoising_unet = UNet3DConditionModel.from_pretrained_2d(
# config.pretrained_base_model_path,
# config.motion_module_path,
# subfolder="unet",
# unet_additional_kwargs=infer_config.unet_additional_kwargs,
# ).to(dtype=weight_dtype, device="cuda")
# pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention
# image_enc = CLIPVisionModelWithProjection.from_pretrained(
# config.image_encoder_path
# ).to(dtype=weight_dtype, device="cuda")
# sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
# scheduler = DDIMScheduler(**sched_kwargs)
# generator = torch.manual_seed(seed)
# width, height = size, size
# # load pretrained weights
# denoising_unet.load_state_dict(
# torch.load(config.denoising_unet_path, map_location="cpu"),
# strict=False,
# )
# reference_unet.load_state_dict(
# torch.load(config.reference_unet_path, map_location="cpu"),
# )
# pose_guider.load_state_dict(
# torch.load(config.pose_guider_path, map_location="cpu"),
# )
# pipe = Pose2VideoPipeline(
# vae=vae,
# image_encoder=image_enc,
# reference_unet=reference_unet,
# denoising_unet=denoising_unet,
# pose_guider=pose_guider,
# scheduler=scheduler,
# )
# pipe = pipe.to("cuda", dtype=weight_dtype)
# date_str = datetime.now().strftime("%Y%m%d")
# time_str = datetime.now().strftime("%H%M")
# save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"
# save_dir = Path(f"output/{date_str}/{save_dir_name}")
# save_dir.mkdir(exist_ok=True, parents=True)
# lmk_extractor = LMKExtractor()
# vis = FaceMeshVisualizer(forehead_edge=False)
# ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
# ref_image_np = crop_face(ref_image_np, lmk_extractor)
# if ref_image_np is None:
# return None, Image.fromarray(ref_img)
# ref_image_np = cv2.resize(ref_image_np, (size, size))
# ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
# face_result = lmk_extractor(ref_image_np)
# if face_result is None:
# return None, ref_image_pil
# lmks = face_result['lmks'].astype(np.float32)
# ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
# sample = prepare_audio_feature(input_audio, wav2vec_model_path=audio_infer_config['a2m_model']['model_path'])
# sample['audio_feature'] = torch.from_numpy(sample['audio_feature']).float().cuda()
# sample['audio_feature'] = sample['audio_feature'].unsqueeze(0)
# # inference
# pred = a2m_model.infer(sample['audio_feature'], sample['seq_len'])
# pred = pred.squeeze().detach().cpu().numpy()
# pred = pred.reshape(pred.shape[0], -1, 3)
# pred = pred + face_result['lmks3d']
# if headpose_video is not None:
# pose_seq = get_headpose_temp(headpose_video)
# else:
# pose_seq = np.load(config['pose_temp'])
# mirrored_pose_seq = np.concatenate((pose_seq, pose_seq[-2:0:-1]), axis=0)
# cycled_pose_seq = np.tile(mirrored_pose_seq, (sample['seq_len'] // len(mirrored_pose_seq) + 1, 1))[:sample['seq_len']]
# # project 3D mesh to 2D landmark
# projected_vertices = project_points(pred, face_result['trans_mat'], cycled_pose_seq, [height, width])
# pose_images = []
# for i, verts in enumerate(projected_vertices):
# lmk_img = vis.draw_landmarks((width, height), verts, normed=False)
# pose_images.append(lmk_img)
# pose_list = []
# pose_tensor_list = []
# pose_transform = transforms.Compose(
# [transforms.Resize((height, width)), transforms.ToTensor()]
# )
# args_L = len(pose_images) if length==0 or length > len(pose_images) else length
# args_L = min(args_L, 300)
# for pose_image_np in pose_images[: args_L]:
# pose_image_pil = Image.fromarray(cv2.cvtColor(pose_image_np, cv2.COLOR_BGR2RGB))
# pose_tensor_list.append(pose_transform(pose_image_pil))
# pose_image_np = cv2.resize(pose_image_np, (width, height))
# pose_list.append(pose_image_np)
# pose_list = np.array(pose_list)
# video_length = len(pose_tensor_list)
# video = pipe(
# ref_image_pil,
# pose_list,
# ref_pose,
# width,
# height,
# video_length,
# steps,
# cfg,
# generator=generator,
# ).videos
# save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
# save_videos_grid(
# video,
# save_path,
# n_rows=1,
# fps=fps,
# )
# stream = ffmpeg.input(save_path)
# audio = ffmpeg.input(input_audio)
# ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
# os.remove(save_path)
# return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil
|