File size: 7,900 Bytes
2e4e201
 
 
 
 
 
 
 
5ef3823
2de857a
 
 
2e4e201
 
2de857a
2e4e201
2de857a
 
 
 
2e4e201
 
2de857a
 
537435d
2e4e201
2de857a
 
2e4e201
5ef3823
2e4e201
 
 
2de857a
2e4e201
2de857a
 
 
 
2e4e201
2de857a
 
 
2e4e201
2de857a
 
 
 
2e4e201
2de857a
 
 
 
 
 
 
 
2e4e201
2de857a
2e4e201
2de857a
 
 
2e4e201
2de857a
 
2e4e201
 
 
 
 
2de857a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e4e201
 
 
 
 
 
 
 
 
2de857a
 
2e4e201
 
 
 
2de857a
 
 
 
2e4e201
 
 
 
 
2de857a
2e4e201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de857a
2e4e201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
537435d
2e4e201
 
537435d
 
 
2e4e201
537435d
 
 
2e4e201
 
 
 
537435d
2e4e201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de857a
2e4e201
 
 
 
 
 
 
 
 
2de857a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import shutil
import ffmpeg
from datetime import datetime
from pathlib import Path
import numpy as np
import cv2
import torch
import spaces
# from diffusers import AutoencoderKL, DDIMScheduler
# from einops import repeat
# from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
# from transformers import CLIPVisionModelWithProjection

# from src.models.pose_guider import PoseGuider
# from src.models.unet_2d_condition import UNet2DConditionModel
# from src.models.unet_3d import UNet3DConditionModel
# from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames, save_videos_grid

# from src.utils.mp_utils  import LMKExtractor
# from src.utils.draw_util import FaceMeshVisualizer
from src.utils.pose_util import project_points_with_trans, matrix_to_euler_and_translation, euler_and_translation_to_matrix
from src.audio2vid import smooth_pose_seq
from src.utils.crop_face_single import crop_face
from src.create_modules import lmk_extractor, vis, pipe

@spaces.GPU
def video2video(ref_img, source_video, size=512, steps=25, length=150, seed=42):
    cfg = 3.5
    
    # config = OmegaConf.load('./configs/prompts/animation_facereenac.yaml')

    # if config.weight_dtype == "fp16":
    #     weight_dtype = torch.float16
    # else:
    #     weight_dtype = torch.float32

    # vae = AutoencoderKL.from_pretrained(
    #     config.pretrained_vae_path,
    # ).to("cuda", dtype=weight_dtype)

    # reference_unet = UNet2DConditionModel.from_pretrained(
    #     config.pretrained_base_model_path,
    #     subfolder="unet",
    # ).to(dtype=weight_dtype, device="cuda")

    # inference_config_path = config.inference_config
    # infer_config = OmegaConf.load(inference_config_path)
    # denoising_unet = UNet3DConditionModel.from_pretrained_2d(
    #     config.pretrained_base_model_path,
    #     config.motion_module_path,
    #     subfolder="unet",
    #     unet_additional_kwargs=infer_config.unet_additional_kwargs,
    # ).to(dtype=weight_dtype, device="cuda")

    # pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention

    # image_enc = CLIPVisionModelWithProjection.from_pretrained(
    #     config.image_encoder_path
    # ).to(dtype=weight_dtype, device="cuda")

    # sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
    # scheduler = DDIMScheduler(**sched_kwargs)

    generator = torch.manual_seed(seed)

    width, height = size, size

    # # load pretrained weights
    # denoising_unet.load_state_dict(
    #     torch.load(config.denoising_unet_path, map_location="cpu"),
    #     strict=False,
    # )
    # reference_unet.load_state_dict(
    #     torch.load(config.reference_unet_path, map_location="cpu"),
    # )
    # pose_guider.load_state_dict(
    #     torch.load(config.pose_guider_path, map_location="cpu"),
    # )

    # pipe = Pose2VideoPipeline(
    #     vae=vae,
    #     image_encoder=image_enc,
    #     reference_unet=reference_unet,
    #     denoising_unet=denoising_unet,
    #     pose_guider=pose_guider,
    #     scheduler=scheduler,
    # )
    # pipe = pipe.to("cuda", dtype=weight_dtype)

    date_str = datetime.now().strftime("%Y%m%d")
    time_str = datetime.now().strftime("%H%M")
    save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"

    save_dir = Path(f"output/{date_str}/{save_dir_name}")
    save_dir.mkdir(exist_ok=True, parents=True)


    # lmk_extractor = LMKExtractor()
    # vis = FaceMeshVisualizer(forehead_edge=False)
    


    ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
    ref_image_np = crop_face(ref_image_np, lmk_extractor)
    if ref_image_np is None:
        return None, Image.fromarray(ref_img)
    
    ref_image_np = cv2.resize(ref_image_np, (size, size))
    ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
    
    face_result = lmk_extractor(ref_image_np)
    if face_result is None: 
        return None, ref_image_pil
    
    lmks = face_result['lmks'].astype(np.float32)
    ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)

    source_images = read_frames(source_video)
    src_fps = get_fps(source_video)
    pose_transform = transforms.Compose(
        [transforms.Resize((height, width)), transforms.ToTensor()]
    )
    
    step = 1
    if src_fps == 60:
        src_fps = 30
        step = 2
    
    pose_trans_list = []
    verts_list = []
    bs_list = []
    src_tensor_list = []
    args_L = len(source_images) if length==0 or length*step > len(source_images) else length*step
    args_L = min(args_L, 300*step)
    for src_image_pil in source_images[: args_L: step]:
        src_tensor_list.append(pose_transform(src_image_pil))
        src_img_np = cv2.cvtColor(np.array(src_image_pil), cv2.COLOR_RGB2BGR)
        frame_height, frame_width, _ = src_img_np.shape
        src_img_result = lmk_extractor(src_img_np)
        if src_img_result is None:
            break
        pose_trans_list.append(src_img_result['trans_mat'])
        verts_list.append(src_img_result['lmks3d'])
        bs_list.append(src_img_result['bs'])

    
    # pose_arr = np.array(pose_trans_list)
    trans_mat_arr = np.array(pose_trans_list)
    verts_arr = np.array(verts_list)
    bs_arr = np.array(bs_list)
    min_bs_idx = np.argmin(bs_arr.sum(1))
    
    # compute delta pose
    pose_arr = np.zeros([trans_mat_arr.shape[0], 6])

    for i in range(pose_arr.shape[0]):
        euler_angles, translation_vector = matrix_to_euler_and_translation(trans_mat_arr[i]) # real pose of source
        pose_arr[i, :3] =  euler_angles
        pose_arr[i, 3:6] =  translation_vector
    
    init_tran_vec = face_result['trans_mat'][:3, 3] # init translation of tgt
    pose_arr[:, 3:6] = pose_arr[:, 3:6] - pose_arr[0, 3:6] + init_tran_vec # (relative translation of source) + (init translation of tgt)

    pose_arr_smooth = smooth_pose_seq(pose_arr, window_size=3)
    pose_mat_smooth = [euler_and_translation_to_matrix(pose_arr_smooth[i][:3], pose_arr_smooth[i][3:6]) for i in range(pose_arr_smooth.shape[0])]    
    pose_mat_smooth = np.array(pose_mat_smooth)   

    # face retarget
    verts_arr = verts_arr - verts_arr[min_bs_idx] + face_result['lmks3d']
    # project 3D mesh to 2D landmark
    projected_vertices = project_points_with_trans(verts_arr, pose_mat_smooth, [frame_height, frame_width])
    
    pose_list = []
    for i, verts in enumerate(projected_vertices):
        lmk_img = vis.draw_landmarks((frame_width, frame_height), verts, normed=False)
        pose_image_np = cv2.resize(lmk_img,  (width, height))
        pose_list.append(pose_image_np)
    
    pose_list = np.array(pose_list)
    
    video_length = len(pose_list)

    video = pipe(
        ref_image_pil,
        pose_list,
        ref_pose,
        width,
        height,
        video_length,
        steps,
        cfg,
        generator=generator,
    ).videos

    save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
    save_videos_grid(
        video,
        save_path,
        n_rows=1,
        fps=src_fps,
    )
    
    audio_output = f'{save_dir}/audio_from_video.aac'
    # extract audio
    try:
        ffmpeg.input(source_video).output(audio_output, acodec='copy').run()
        # merge audio and video
        stream = ffmpeg.input(save_path)
        audio = ffmpeg.input(audio_output)
        ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
    
        os.remove(save_path)
        os.remove(audio_output)
    except:
        shutil.move(
            save_path,
            save_path.replace('_noaudio.mp4', '.mp4')
        )
    
    return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil