Spaces:
Running
Running
File size: 4,210 Bytes
139d7b2 827021c 139d7b2 827021c 66754a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import gradio as gr
import torch.nn as nn
from torch import tanh, Tensor
from abc import ABC, abstractmethod
from huggingface_hub import hf_hub_download
import torch
import json
from omegaconf import OmegaConf
from model import Generator
class BaseGenerator(ABC, nn.Module):
def __init__(self, channels: int = 3):
super().__init__()
self.channels = channels
@abstractmethod
def forward(self, x: Tensor) -> Tensor:
pass
class Generator(BaseGenerator):
def __init__(self, cfg: DictConfig):
super().__init__(cfg.channels)
self.cfg = cfg
self.model = self._construct_model()
def _construct_model(self):
initial_layer = nn.Sequential(
nn.Conv2d(
self.cfg.channels,
self.cfg.num_features,
kernel_size=7,
stride=1,
padding=3,
padding_mode="reflect",
),
nn.ReLU(inplace=True),
)
down_blocks = nn.Sequential(
ConvBlock(
self.cfg.num_features,
self.cfg.num_features * 2,
kernel_size=3,
stride=2,
padding=1,
),
ConvBlock(
self.cfg.num_features * 2,
self.cfg.num_features * 4,
kernel_size=3,
stride=2,
padding=1,
),
)
residual_blocks = nn.Sequential(
*[
ResidualBlock(self.cfg.num_features * 4)
for _ in range(self.cfg.num_residuals)
]
)
up_blocks = nn.Sequential(
ConvBlock(
self.cfg.num_features * 4,
self.cfg.num_features * 2,
down=False,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
),
ConvBlock(
self.cfg.num_features * 2,
self.cfg.num_features,
down=False,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
),
)
last_layer = nn.Conv2d(
self.cfg.num_features,
self.cfg.channels,
kernel_size=7,
stride=1,
padding=3,
padding_mode="reflect",
)
return nn.Sequential(
initial_layer, down_blocks, residual_blocks, up_blocks, last_layer
)
def forward(self, x: Tensor) -> Tensor:
return tanh(self.model(x))
class ConvBlock(nn.Module):
def __init__(
self, in_channels, out_channels, down=True, use_activation=True, **kwargs
):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, padding_mode="reflect", **kwargs)
if down
else nn.ConvTranspose2d(in_channels, out_channels, **kwargs),
nn.InstanceNorm2d(out_channels),
nn.ReLU(inplace=True) if use_activation else nn.Identity(),
)
def forward(self, x: Tensor) -> Tensor:
return self.conv(x)
class ResidualBlock(nn.Module):
def __init__(self, channels: int):
super().__init__()
self.block = nn.Sequential(
ConvBlock(channels, channels, kernel_size=3, padding=1),
ConvBlock(
channels, channels, use_activation=False, kernel_size=3, padding=1
),
)
def forward(self, x: Tensor) -> Tensor:
return x + self.block(x)
repo_id = "Kiwinicki/sat2map-generator"
generator_path = hf_hub_download(repo_id=repo_id, filename="generator.pth")
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
model_path = hf_hub_download(repo_id=repo_id, filename="model.py")
with open(config_path, "r") as f:
config_dict = json.load(f)
cfg = OmegaConf.create(config_dict)
generator = Generator(cfg)
generator.load_state_dict(torch.load(generator_path))
generator.eval()
def greet(iamge):
return image
iface = gr.Interface(fn=greet, inputs="image", outputs="image")
iface.launch() |