Spaces:
Runtime error
Runtime error
Add dependencies
Browse files- app.py +10 -1
- constraints.py +68 -0
app.py
CHANGED
@@ -5,13 +5,22 @@ import pandas as pd
|
|
5 |
import torch
|
6 |
import tqdm
|
7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
-
from baseline_BERT import id2label
|
9 |
import gradio as gr
|
|
|
10 |
|
11 |
model_ckpt = "Kithogue/2-lvl-events-multilingual"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
|
13 |
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def get_inference(sample):
|
16 |
model_hf = AutoModelForSequenceClassification.from_pretrained(model_ckpt)
|
17 |
encoding = tokenizer(sample, return_tensors="pt")
|
|
|
5 |
import torch
|
6 |
import tqdm
|
7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
8 |
import gradio as gr
|
9 |
+
import constraints
|
10 |
|
11 |
model_ckpt = "Kithogue/2-lvl-events-multilingual"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
|
13 |
|
14 |
|
15 |
+
def get_labels2id(is_two_layer):
|
16 |
+
"""sorted to preserve the order"""
|
17 |
+
labels = constraints.get_all_labels(is_two_layer)
|
18 |
+
return {label: i for i, label in enumerate(labels)}
|
19 |
+
|
20 |
+
|
21 |
+
id2label = {v: k for k, v in get_labels2id(True).items()}
|
22 |
+
|
23 |
+
|
24 |
def get_inference(sample):
|
25 |
model_hf = AutoModelForSequenceClassification.from_pretrained(model_ckpt)
|
26 |
encoding = tokenizer(sample, return_tensors="pt")
|
constraints.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module to produce a 3-dimension tensor of size [I, J, K], where I, J, K are number of classes on each level.
|
2 |
+
If there is a path from i to j to k, then the number is 1, otherwise 0.
|
3 |
+
Based on the lowest level of the taxonomy."""
|
4 |
+
|
5 |
+
import jsonlines
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
if torch.cuda.is_available():
|
10 |
+
device = 'cuda'
|
11 |
+
else:
|
12 |
+
'cpu'
|
13 |
+
|
14 |
+
|
15 |
+
def get_layered_labels(is_two_layer: bool = False):
|
16 |
+
path_to_train = '/home/kisa/events/event-detection-hierarchical/data/RAMS/flat/train.jsonl'
|
17 |
+
with jsonlines.open(path_to_train, 'r') as f:
|
18 |
+
all_labels = []
|
19 |
+
for ff in f:
|
20 |
+
all_labels.append(ff['events']['type'])
|
21 |
+
all_labels = list(set(all_labels))
|
22 |
+
if is_two_layer:
|
23 |
+
return [get_two_layers(target) for target in all_labels]
|
24 |
+
else:
|
25 |
+
return [target.split('.') for target in all_labels]
|
26 |
+
|
27 |
+
|
28 |
+
def get_two_layers(target):
|
29 |
+
return target.split('.')[:2]
|
30 |
+
|
31 |
+
|
32 |
+
def get_all_labels(is_two_layer):
|
33 |
+
layered_labels = get_layered_labels(is_two_layer)
|
34 |
+
all_labels = [trgt for target in layered_labels for trgt in target]
|
35 |
+
labels = sorted(list(set(all_labels)))
|
36 |
+
if 'n/a' in labels:
|
37 |
+
labels.remove('n/a')
|
38 |
+
return labels
|
39 |
+
|
40 |
+
|
41 |
+
def get_labels2id(is_two_layer):
|
42 |
+
"""sorted to preserve the order"""
|
43 |
+
labels = get_all_labels(is_two_layer)
|
44 |
+
return {label: i for i, label in enumerate(labels)}
|
45 |
+
|
46 |
+
|
47 |
+
def get_all_paths(is_two_layer):
|
48 |
+
labels2id = get_labels2id(is_two_layer)
|
49 |
+
layered_labels = get_layered_labels(is_two_layer)
|
50 |
+
layered_labels_pos = []
|
51 |
+
"""Filtering out n/a class.
|
52 |
+
We assume that texts with such label have only 2 coarser layers as a valid label path,
|
53 |
+
which is already included in the valid path constraint"""
|
54 |
+
for target in layered_labels:
|
55 |
+
target_pos = []
|
56 |
+
for target_word in target:
|
57 |
+
if target_word == 'n/a':
|
58 |
+
continue
|
59 |
+
else:
|
60 |
+
target_pos.append(labels2id[target_word])
|
61 |
+
if target_pos not in layered_labels_pos:
|
62 |
+
layered_labels_pos.append(target_pos)
|
63 |
+
array_dim = len(labels2id)
|
64 |
+
path_matrix = np.zeros((array_dim, array_dim, array_dim))
|
65 |
+
for path in layered_labels_pos:
|
66 |
+
if len(path) > 2:
|
67 |
+
path_matrix[path[0], path[1], path[2]] = 1
|
68 |
+
return torch.Tensor(path_matrix).to(device)
|