Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
import time | |
import logging | |
from diffusers import DiffusionPipeline, AutoencoderTiny | |
# Using AttnProcessor2_0 for potential speedup with PyTorch 2.x | |
from diffusers.models.attention_processor import AttnProcessor2_0 | |
# Assuming custom_pipeline defines FluxWithCFGPipeline correctly | |
from custom_pipeline import FluxWithCFGPipeline | |
# --- Setup Logging --- | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# --- Torch Optimizations --- | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.benchmark = True # Enable cuDNN benchmark for potentially faster convolutions | |
# --- Constants --- | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 # Keep a reasonable limit to prevent OOMs | |
DEFAULT_WIDTH = 1024 | |
DEFAULT_HEIGHT = 1024 | |
DEFAULT_INFERENCE_STEPS = 1 # FLUX Schnell is designed for few steps | |
MIN_INFERENCE_STEPS = 1 | |
MAX_INFERENCE_STEPS = 8 # Allow slightly more steps for potential quality boost | |
ENHANCE_STEPS = 4 # Fixed steps for the enhance button | |
# --- Device and Model Setup --- | |
dtype = torch.float16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = None # Initialize pipe to None | |
try: | |
logging.info("Loading diffusion pipeline...") | |
pipe = FluxWithCFGPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype | |
) | |
logging.info("Loading VAE...") | |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype) | |
logging.info(f"Moving pipeline to {device}...") | |
pipe.to(device) | |
# Apply optimizations | |
logging.info("Setting attention processor...") | |
pipe.unet.set_attn_processor(AttnProcessor2_0()) | |
pipe.vae.set_attn_processor(AttnProcessor2_0()) # VAE might benefit too | |
logging.info("Loading and fusing LoRA...") | |
pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better") | |
pipe.set_adapters(["better"], adapter_weights=[1.0]) | |
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0) # Fuse for potential speedup | |
pipe.unload_lora_weights() # Unload after fusing | |
logging.info("LoRA fused and unloaded.") | |
# --- Compilation (Major Speed Optimization) --- | |
# Note: Compilation takes time on the first run. | |
# logging.info("Compiling UNet (this may take a moment)...") | |
# pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) # Use reduce-overhead for dynamic shapes | |
# logging.info("Compiling VAE Decoder...") | |
# pipe.vae.decoder = torch.compile(pipe.vae.decoder, mode="reduce-overhead", fullgraph=True) | |
# logging.info("Compiling VAE Encoder...") | |
# pipe.vae.encoder = torch.compile(pipe.vae.encoder, mode="reduce-overhead", fullgraph=True) | |
# logging.info("Model compilation finished.") | |
# --- Optional: Warm-up Run --- | |
# logging.info("Performing warm-up run...") | |
# with torch.inference_mode(): | |
# _ = pipe(prompt="warmup", num_inference_steps=1, generator=torch.Generator(device=device).manual_seed(0), output_type="pil", return_dict=False)[0] | |
# logging.info("Warm-up complete.") | |
# Clear cache after setup | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
logging.info("CUDA cache cleared after setup.") | |
except Exception as e: | |
logging.error(f"Error during model loading or setup: {e}", exc_info=True) | |
# Display error in Gradio if UI is already built, otherwise just log and exit. | |
# For simplicity here, we'll rely on the Gradio UI showing an error if `pipe` is None later. | |
# If running script directly, consider `sys.exit()` | |
# raise gr.Error(f"Failed to load models. Check logs for details. Error: {e}") | |
# --- Inference Function --- | |
# Slightly increased duration buffer | |
def generate_image(prompt: str, seed: int = 42, width: int = DEFAULT_WIDTH, height: int = DEFAULT_HEIGHT, randomize_seed: bool = False, num_inference_steps: int = DEFAULT_INFERENCE_STEPS, is_enhance: bool = False): | |
"""Generates an image using the FLUX pipeline with error handling.""" | |
if pipe is None: | |
raise gr.Error("Diffusion pipeline failed to load. Cannot generate images.") | |
if not prompt or prompt.strip() == "": | |
# Return a blank image or previous result if prompt is empty? | |
# For now, raise warning and return None. | |
gr.Warning("Prompt is empty. Please enter a description.") | |
# Returning None for image, original seed, and error message | |
return None, seed, "Error: Empty prompt" | |
start_time = time.time() | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Clamp dimensions to avoid excessive memory usage | |
width = min(width, MAX_IMAGE_SIZE) | |
height = min(height, MAX_IMAGE_SIZE) | |
# Use fixed steps for enhance button, otherwise use slider value | |
steps_to_use = ENHANCE_STEPS if is_enhance else num_inference_steps | |
# Clamp steps | |
steps_to_use = max(MIN_INFERENCE_STEPS, min(steps_to_use, MAX_INFERENCE_STEPS)) | |
logging.info(f"Generating image with prompt: '{prompt}', seed: {seed}, size: {width}x{height}, steps: {steps_to_use}") | |
try: | |
# Ensure generator is on the correct device | |
generator = torch.Generator(device=device).manual_seed(int(float(seed))) | |
# Use inference_mode for efficiency | |
with torch.inference_mode(): | |
# Generate the image (assuming pipe returns list/tuple with image first) | |
# Modify pipe call based on its actual signature if needed | |
result_img = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=steps_to_use, | |
generator=generator, | |
output_type="pil", # Ensure PIL output for Gradio Image component | |
return_dict=False # Assuming the custom pipeline supports this for direct output | |
)[0][0] # Assuming the output structure is [[img]] | |
latency = time.time() - start_time | |
latency_str = f"Latency: {latency:.2f} seconds (Steps: {steps_to_use})" | |
logging.info(f"Image generated successfully. {latency_str}") | |
return result_img, seed, latency_str | |
except torch.cuda.OutOfMemoryError as e: | |
logging.error(f"CUDA OutOfMemoryError: {e}", exc_info=True) | |
# Clear cache and suggest reducing size/steps | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
raise gr.Error("GPU ran out of memory. Try reducing the image width/height or the number of inference steps.") | |
except Exception as e: | |
logging.error(f"Error during image generation: {e}", exc_info=True) | |
# Clear cache just in case | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
raise gr.Error(f"An error occurred during generation: {e}") | |
# --- Real-time Generation Wrapper --- | |
# This function checks the realtime toggle before calling the main generation function. | |
# It's triggered by changes in prompt or sliders when realtime is enabled. | |
def handle_realtime_update(realtime_enabled: bool, prompt: str, seed: int, width: int, height: int, randomize_seed: bool, num_inference_steps: int): | |
if realtime_enabled and pipe is not None: | |
logging.debug("Realtime update triggered.") | |
# Call generate_image directly. Errors within generate_image will be caught and raised as gr.Error. | |
# We don't set is_enhance=True for realtime updates. | |
return generate_image(prompt, seed, width, height, randomize_seed, num_inference_steps, is_enhance=False) | |
else: | |
# If realtime is disabled or pipe failed, don't update the image, seed, or latency. | |
# Return gr.update() for each output component to indicate no change. | |
logging.debug("Realtime update skipped (disabled or pipe error).") | |
return gr.update(), gr.update(), gr.update() | |
# --- Example Prompts --- | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cute white cat holding a sign that says hello world", | |
"an anime illustration of Steve Jobs", | |
"Create image of Modern house in minecraft style", | |
"photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair", | |
"Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.", | |
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.", | |
"High-resolution photorealistic render of a sleek, futuristic motorcycle parked on a neon-lit street at night, rain reflecting the lights.", | |
"Watercolor painting of a cozy bookstore interior with overflowing shelves and a cat sleeping in a sunbeam.", | |
] | |
# --- Gradio UI --- | |
with gr.Blocks() as demo: | |
with gr.Column(elem_id="app-container"): | |
gr.Markdown("# 🎨 Realtime FLUX Image Generator") | |
gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.") | |
gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>") | |
with gr.Row(): | |
with gr.Column(scale=2.5): | |
result = gr.Image(label="Generated Image", show_label=False, interactive=False) | |
with gr.Column(scale=1): | |
prompt = gr.Text( | |
label="Prompt", | |
placeholder="Describe the image you want to generate...", | |
lines=3, | |
show_label=False, | |
container=False, | |
) | |
generateBtn = gr.Button("🖼️ Generate Image") | |
enhanceBtn = gr.Button("🚀 Enhance Image") | |
with gr.Column("Advanced Options"): | |
with gr.Row(): | |
realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False) | |
latency = gr.Text(label="Latency") | |
with gr.Row(): | |
seed = gr.Number(label="Seed", value=42) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT) | |
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS) | |
with gr.Row(): | |
gr.Markdown("### 🌟 Inspiration Gallery") | |
with gr.Row(): | |
gr.Examples( | |
examples=examples, | |
fn=generate_image, | |
inputs=[prompt], | |
outputs=[result, seed, latency], | |
cache_examples="lazy" | |
) | |
enhanceBtn.click( | |
fn=generate_image, | |
inputs=[prompt, seed, width, height], | |
outputs=[result, seed, latency], | |
show_progress="full", | |
queue=False, | |
concurrency_limit=None | |
) | |
generateBtn.click( | |
fn=generate_image, | |
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], | |
outputs=[result, seed, latency], | |
show_progress="full", | |
api_name="RealtimeFlux", | |
queue=False | |
) | |
def update_ui(realtime_enabled): | |
return { | |
prompt: gr.update(interactive=True), | |
generateBtn: gr.update(visible=not realtime_enabled) | |
} | |
realtime.change( | |
fn=update_ui, | |
inputs=[realtime], | |
outputs=[prompt, generateBtn], | |
queue=False, | |
concurrency_limit=None | |
) | |
def realtime_generation(*args): | |
if args[0]: # If realtime is enabled | |
return next(generate_image(*args[1:])) | |
prompt.submit( | |
fn=generate_image, | |
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], | |
outputs=[result, seed, latency], | |
show_progress="full", | |
queue=False, | |
concurrency_limit=None | |
) | |
for component in [prompt, width, height, num_inference_steps]: | |
component.input( | |
fn=realtime_generation, | |
inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps], | |
outputs=[result, seed, latency], | |
show_progress="hidden", | |
trigger_mode="always_last", | |
queue=False, | |
concurrency_limit=None | |
) | |
# Launch the app | |
demo.launch() | |