KingNish commited on
Commit
f86e5bd
·
verified ·
1 Parent(s): 49319e9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -22
app.py CHANGED
@@ -6,14 +6,19 @@ import gradio as gr
6
  import numpy as np
7
  import torch
8
  from PIL import Image
9
- from diffusers import EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, StableDiffusionXLImg2ImgPipeline, AutoencoderKL
10
  from huggingface_hub import hf_hub_download, InferenceClient
11
- from diffusers import DiffusionPipeline
12
 
13
- dtype = torch.bfloat16
14
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
15
 
16
- pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1").to(device)
 
17
 
18
  help_text = """
19
  To optimize image results:
@@ -39,26 +44,18 @@ def set_timesteps_patched(self, num_inference_steps: int, device = None):
39
  self.sigmas = self.sigmas.to("cpu")
40
 
41
  # Image Editor
42
-
43
- vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
44
-
45
- refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
46
- refiner.to("cuda")
47
-
48
  edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
49
  EDMEulerScheduler.set_timesteps = set_timesteps_patched
50
  pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file( edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16 )
51
  pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
52
  pipe_edit.to("cuda")
53
 
54
-
55
-
56
  client1 = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
57
- system_instructions1 = "<|system|>\nAct as Image Prompt Generation expert, Your task is to modify prompt by USER to more better and detailed prompt for Image Generation. \n Ensure the prompt is deatiled, yet descriptive to generate an exceptional image that meets the user's expectations. \n Your task is to reply with final optimized prompt only. Reply with optimized prompt only.\n<|user|>\n"
58
 
59
  def promptifier(prompt):
60
  formatted_prompt = f"{system_instructions1}{prompt}\n<|assistant|>\n"
61
- stream = client1.text_generation(formatted_prompt, max_new_tokens=300)
62
  return stream
63
 
64
  # Generator
@@ -74,6 +71,7 @@ def king(type ,
74
  width: int = 1024,
75
  height: int = 1024,
76
  guidance_scale: float = 6,
 
77
  progress=gr.Progress(track_tqdm=True)
78
  ):
79
  if type=="Image Editing" :
@@ -104,15 +102,29 @@ def king(type ,
104
  print(f"BEFORE: {instruction} ")
105
  instruction = promptifier(instruction)
106
  print(f"AFTER: {instruction} ")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
 
108
- refine = pipe(
109
- prompt = instruction,
110
  negative_prompt = negative_prompt,
111
- width = width,
112
- height = height,
113
- num_inference_steps = (steps/5),
114
- generator = generator,
115
- guidance_scale=0.0 ).images[0]
116
  return seed, refine
117
 
118
  client = InferenceClient()
@@ -190,6 +202,7 @@ with gr.Blocks(css=css) as demo:
190
  with gr.Row():
191
  type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True)
192
  enhance_prompt = gr.Checkbox(label="Enhance prompt", value=False, scale=0)
 
193
 
194
  with gr.Row():
195
  input_image = gr.Image(label="Image", type='filepath', interactive=True)
@@ -242,6 +255,7 @@ with gr.Blocks(css=css) as demo:
242
  width,
243
  height,
244
  guidance_scale,
 
245
  ],
246
  outputs=[seed, input_image],
247
  api_name = "image_gen_pro",
 
6
  import numpy as np
7
  import torch
8
  from PIL import Image
9
+ from diffusers import StableDiffusionXLImg2ImgPipeline, StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL, DPMSolverMultistepScheduler
10
  from huggingface_hub import hf_hub_download, InferenceClient
 
11
 
12
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
13
+ pipe = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, vae=vae)
14
+ pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
15
+ pipe.to("cuda")
16
+
17
+ refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
18
+ refiner.to("cuda")
19
 
20
+ pipe_fast = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0_Lightning", torch_dtype=torch.float16, vae=vae, use_safetensors=True)
21
+ pipe_fast.to("cuda")
22
 
23
  help_text = """
24
  To optimize image results:
 
44
  self.sigmas = self.sigmas.to("cpu")
45
 
46
  # Image Editor
 
 
 
 
 
 
47
  edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
48
  EDMEulerScheduler.set_timesteps = set_timesteps_patched
49
  pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file( edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16 )
50
  pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
51
  pipe_edit.to("cuda")
52
 
 
 
53
  client1 = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
54
+ system_instructions1 = "<|system|>\nAct as Image Prompt Generation expert, Your task is to modify prompt by USER to more better prompt for Image Generation in Stable Diffusion XL. \n Modify the user's prompt to generate a high-quality image by incorporating essential keywords and styles according to prompt if none style is mentioned than assume realistic. The optimized prompt may include keywords according to prompt for resolution (4K, HD, 16:9 aspect ratio, , etc.), image quality (cute, masterpiece, high-quality, vivid colors, intricate details, etc.), and desired art styles (realistic, anime, 3D, logo, futuristic, fantasy, etc.). Ensure the prompt is concise, yet comprehensive and choose keywords wisely, to generate an exceptional image that meets the user's expectations. \n Your task is to reply with final optimized prompt only. If you get big prompt make it concise. and Apply all keyword at last of prompt. Reply with optimized prompt only.\n<|user|>\n"
55
 
56
  def promptifier(prompt):
57
  formatted_prompt = f"{system_instructions1}{prompt}\n<|assistant|>\n"
58
+ stream = client1.text_generation(formatted_prompt, max_new_tokens=100)
59
  return stream
60
 
61
  # Generator
 
71
  width: int = 1024,
72
  height: int = 1024,
73
  guidance_scale: float = 6,
74
+ fast=True,
75
  progress=gr.Progress(track_tqdm=True)
76
  ):
77
  if type=="Image Editing" :
 
102
  print(f"BEFORE: {instruction} ")
103
  instruction = promptifier(instruction)
104
  print(f"AFTER: {instruction} ")
105
+ guidance_scale2=(guidance_scale/2)
106
+ if fast:
107
+ refine = pipe_fast(prompt = instruction,
108
+ guidance_scale = guidance_scale2,
109
+ num_inference_steps = int(steps/2.5),
110
+ width = width, height = height,
111
+ generator = generator,
112
+ ).images[0]
113
+ else:
114
+ image = pipe_fast( prompt = instruction,
115
+ negative_prompt=negative_prompt,
116
+ guidance_scale = guidance_scale,
117
+ num_inference_steps = steps,
118
+ width = width, height = height,
119
+ generator = generator, output_type="latent",
120
+ ).images
121
 
122
+ refine = refiner( prompt=instruction,
 
123
  negative_prompt = negative_prompt,
124
+ guidance_scale = 7.5,
125
+ num_inference_steps= steps,
126
+ image=image, generator=generator,
127
+ ).images[0]
 
128
  return seed, refine
129
 
130
  client = InferenceClient()
 
202
  with gr.Row():
203
  type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True)
204
  enhance_prompt = gr.Checkbox(label="Enhance prompt", value=False, scale=0)
205
+ fast = gr.Checkbox(label="FAST Generation", value=True, scale=0)
206
 
207
  with gr.Row():
208
  input_image = gr.Image(label="Image", type='filepath', interactive=True)
 
255
  width,
256
  height,
257
  guidance_scale,
258
+ fast,
259
  ],
260
  outputs=[seed, input_image],
261
  api_name = "image_gen_pro",