Spaces:
Build error
Build error
from fastapi import FastAPI # Import the FastAPI framework for building APIs | |
from typing import List, Literal # Import typing hints for function annotations | |
from pydantic import BaseModel # Import BaseModel for creating data models | |
import uvicorn # Import uvicorn for running the FastAPI app | |
import pandas as pd # Import pandas library for data manipulation | |
import pickle, os # Import pickle and os modules for handling files and data serialization | |
# Define a function to load machine learning components | |
def load_ml_components(fp): | |
'''Load machine learning to re-use in app ''' | |
with open(fp, 'rb') as f: | |
object = pickle.load(f) # Load a pickled object (machine learning model) | |
return object # Return the loaded object | |
# Define a Pydantic model for the input data | |
class Sepsis(BaseModel): | |
""" | |
Represents the input data for the model prediction. | |
Attributes: | |
PlasmaGlucose (int): The plasma glucose level of the individual. | |
BloodWorkResult_1 (int): The result of blood work test 1. | |
BloodPressure (int): The blood pressure reading of the individual. | |
BloodWorkResult_2 (int): The result of blood work test 2. | |
BloodWorkResult_3 (int): The result of blood work test 3. | |
BodyMassIndex (float): The body mass index of the individual. | |
BloodWorkResult_4 (float): The result of blood work test 4. | |
Age (int): The age of the individual. | |
'sepsis' is the target feature which holds 0 = Negative and 1 = Positive. | |
""" | |
# Define the input features as class attributes | |
# PlasmaGlucose : int | |
#BloodWorkResult_1 : int | |
#BloodPressure : int | |
#BloodWorkResult_2 : int | |
#BloodWorkResult_3 : int | |
#BodyMassIndex : float | |
#BloodWorkResult_4 : float | |
#Age : int | |
# Setup | |
""" | |
Get the absolute path of the current model file. | |
then extracts the directory path from the absolute path of the model file. | |
This is useful when we need to locate the file | |
relative to our script's location. | |
""" | |
# Get the absolute path of the current directory | |
DIRPATH = os.path.dirname(os.path.realpath(__file__)) | |
# Join the directory path with the model file name | |
ml_core_fp = os.path.join(DIRPATH, 'gradient_boosting_model.pkl') | |
# Define the labels manually | |
labels = ['Negative', 'Positive'] | |
# Load the machine learning components | |
end2end_pipeline = load_ml_components(fp=ml_core_fp) # Load the machine learning model from the file | |
# Access the model step of the pipeline | |
model = end2end_pipeline.named_steps['model'] # Access the model component from the pipeline | |
# Create a dictionary to map index to labels | |
idx_to_labels = {i: l for (i, l) in enumerate(labels)} | |
# Print predictable labels and index-to-label mapping | |
print(f'\n[Info]Predictable labels: {labels}') | |
print(f'\n[Info]Indices to labels: {idx_to_labels}') | |
# Print information about the loaded model | |
print(f'\n[Info]ML components loaded - Model: {model}') | |
# Create the FastAPI application instance | |
app = FastAPI(title='Sepsis Prediction API') # Create a FastAPI instance with a title | |
# Define a route to handle the root endpoint | |
def root(): | |
return{ | |
"info" : "Sepsis Prediction API: This interface is about the prediction of sepsis disease of patients in ICU." | |
} | |
# Define a route to handle the prediction | |
def sepsis_classification(PlasmaGlucose : int, | |
BloodWorkResult_1 : int, | |
BloodPressure : int, | |
BloodWorkResult_2 : int, | |
BloodWorkResult_3 : int, | |
BodyMassIndex : float, | |
BloodWorkResult_4 : float, | |
Age : int): | |
# Define checkmarks for printing symbols | |
red_x = u"\u274C" | |
green_checkmark = "\033[32m" + u"\u2713" + "\033[0m" #u"\u2713" | |
try: | |
# # Create a dataframe from the input data, to solve the indexing issue, wrapp dict in a list | |
df = pd.DataFrame( | |
[ { | |
'PlasmaGlucose': PlasmaGlucose, | |
'BloodWorkResult_1(U/ml)': BloodWorkResult_1, | |
'BloodPressure(mm Hg)': BloodPressure, | |
'BloodWorkResult_2(mm)': BloodWorkResult_2, | |
'BloodWorkResult_3(U/ml)': BloodWorkResult_3, | |
'BodyMassIndex(kg/m)^2': BodyMassIndex, | |
'BloodWorkResult_4(U/ml)':BloodWorkResult_4, | |
'Age (years)':Age} ] | |
) | |
# Print input data as a dataframe | |
print(f'[Info]Input data as dataframe:\n{df.to_markdown()}') | |
# Predict using the loaded model | |
output = model.predict(df) | |
confidence_scores = model.predict_proba(df) # Predict the probabilities for each class | |
print(f'Considering the best confidence score, the output is: {output}') | |
print(f'Confidence scores: {confidence_scores}') | |
# Get index of predicted class | |
predicted_idx = output | |
# Store index then replace by the matching label | |
df['Predicted label'] = predicted_idx | |
predicted_label = df['Predicted label'].replace(idx_to_labels) | |
df['Predicted label'] = predicted_label | |
# Map predicted indices to labels | |
predicted_labels = [idx_to_labels[idx] for idx in output] | |
# Store the predicted probabilities for each class in the dataframe | |
for i, label in enumerate(labels): | |
df[f'Confidence_{label}'] = confidence_scores[:, i] * 100 # Convert to percentage | |
# Print the result with confidence scores as percentages | |
if predicted_labels: | |
i = 0 | |
label = predicted_labels[0] # Get the first predicted label | |
confidence_score_percentage = max(confidence_scores[i]) * 100 | |
print(f"{green_checkmark} This patient in ICU has been classified as Sepsis {label} with confidence of: {confidence_score_percentage:.1f}%") | |
msg = "Execution went fine" | |
code = 1 | |
pred = df.to_dict("records") | |
except Exception as e: | |
print(f"\033[91m{red_x} An exception occurred: {str(e)}") | |
msg = "Execution did not go well" | |
code = 0 | |
pred = None | |
# Create the API response | |
result = {"Execution_msg": msg, "execution_code": code, "prediction": pred} | |
return result | |
# Run the FastAPI application using uvicorn | |
if __name__ == "__main__": | |
uvicorn.run("main:app", reload = False) | |