Spaces:
Sleeping
Sleeping
File size: 14,079 Bytes
b34f0d5 7dcc8af 9bab38e 5900591 7dcc8af b34f0d5 04d26dc 85ca627 f1d1009 85ca627 f1d1009 85ca627 7dcc8af 85ca627 f1d1009 04d26dc c65ce97 7dcc8af b34f0d5 092cc1c 85ca627 0b80f96 85ca627 04d26dc 092cc1c 85ca627 092cc1c 8144da3 092cc1c 9bab38e f1d1009 85ca627 f1d1009 85ca627 f1d1009 85ca627 9bab38e 85ca627 f1d1009 9bab38e 8144da3 9bab38e 5900591 85ca627 5900591 85ca627 5900591 85ca627 5900591 8987bf9 5900591 85ca627 8987bf9 5900591 85ca627 5900591 85ca627 8987bf9 5900591 8987bf9 5900591 8987bf9 5900591 8987bf9 5900591 8987bf9 5900591 8987bf9 c757549 8987bf9 5900591 8987bf9 f1d1009 7dcc8af b34f0d5 85ca627 b34f0d5 7dcc8af f1d1009 85ca627 f1d1009 04d26dc 23d8e09 7dcc8af b34f0d5 2c0bbf8 23d8e09 8144da3 23d8e09 f1d1009 0b80f96 f1d1009 85ca627 f1d1009 23d8e09 85ca627 04d26dc 9bab38e 2c0bbf8 9bab38e 8144da3 9bab38e f1d1009 85ca627 f1d1009 9bab38e 6d1479a 04d26dc 5900591 2c0bbf8 5900591 85ca627 5900591 04d26dc 5900591 8987bf9 2c0bbf8 5900591 85ca627 8987bf9 85ca627 5900591 04d26dc 4508cee dbfe290 5900591 b34f0d5 04d26dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import gradio as gr
from huggingface_hub import InferenceClient
import openai
import anthropic
import os
# Cohere Command R+ 모델 ID 정의
COHERE_MODEL = "CohereForAI/c4ai-command-r-plus-08-2024"
def get_client(model_name: str):
"""
모델 이름에 맞춰 InferenceClient 생성.
HuggingFace 토큰은 os.environ.get("HF_TOKEN")을 통해 환경변수로 가져온다.
"""
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
raise ValueError("HuggingFace API 토큰이 필요합니다. (환경변수 HF_TOKEN 미설정)")
if model_name == "Cohere Command R+":
model_id = COHERE_MODEL
else:
raise ValueError("유효하지 않은 모델 이름입니다.")
return InferenceClient(model_id, token=hf_token)
def cohere_respond(
message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
):
"""
Cohere Command R+ 모델 응답 함수.
HF 토큰은 함수 내부에서 os.environ을 통해 불러온다.
"""
model_name = "Cohere Command R+"
try:
client = get_client(model_name)
except ValueError as e:
chat_history.append((message, str(e)))
return chat_history
messages = [{"role": "system", "content": system_message}]
for human, assistant in chat_history:
if human:
messages.append({"role": "user", "content": human})
if assistant:
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
try:
response_full = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
assistant_message = response_full.choices[0].message.content
chat_history.append((message, assistant_message))
return chat_history
except Exception as e:
error_message = f"오류가 발생했습니다: {str(e)}"
chat_history.append((message, error_message))
return chat_history
def chatgpt_respond(
message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
):
"""
ChatGPT 모델 응답 함수.
OpenAI 토큰은 함수 내부에서 os.environ을 통해 불러온다.
"""
openai_token = os.environ.get("OPENAI_TOKEN")
if not openai_token:
chat_history.append((message, "OpenAI API 토큰이 필요합니다. (환경변수 OPENAI_TOKEN 미설정)"))
return chat_history
openai.api_key = openai_token # 환경변수에서 받은 토큰 사용
messages = [{"role": "system", "content": system_message}]
for human, assistant in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
try:
response = openai.ChatCompletion.create(
model="gpt-4o-mini", # 또는 다른 모델 ID 사용
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
assistant_message = response.choices[0].message['content']
chat_history.append((message, assistant_message))
return chat_history
except Exception as e:
error_message = f"오류가 발생했습니다: {str(e)}"
chat_history.append((message, error_message))
return chat_history
def claude_respond(
message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
):
"""
Claude 모델 응답 함수.
Claude 토큰은 함수 내부에서 os.environ을 통해 불러온다.
"""
claude_token = os.environ.get("CLAUDE_TOKEN")
if not claude_token:
chat_history.append((message, "Claude API 토큰이 필요합니다. (환경변수 CLAUDE_TOKEN 미설정)"))
return chat_history
try:
client = anthropic.Anthropic(api_key=claude_token)
response = client.messages.create(
model="claude-3-haiku-20240307",
max_tokens=max_tokens,
temperature=temperature,
system=system_message,
messages=[
{
"role": "user",
"content": message
}
]
)
assistant_message = response.content[0].text
chat_history.append((message, assistant_message))
return chat_history
except Exception as e:
error_message = f"오류가 발생했습니다: {str(e)}"
chat_history.append((message, error_message))
return chat_history
def deepseek_respond(
message,
chat_history,
system_message,
deepseek_model_choice,
max_tokens,
temperature,
top_p,
):
"""
DeepSeek 모델 응답 함수.
DeepSeek 토큰은 함수 내부에서 os.environ을 통해 불러온다.
deepseek_model_choice에 따라 deepseek-chat 또는 deepseek-reasoner를 선택하며,
스트리밍 방식으로 응답을 받아옵니다.
"""
deepseek_token = os.environ.get("DEEPSEEK_TOKEN")
if not deepseek_token:
chat_history.append((message, "DeepSeek API 토큰이 필요합니다. (환경변수 DEEPSEEK_TOKEN 미설정)"))
yield chat_history
return
openai.api_key = deepseek_token
openai.api_base = "https://api.deepseek.com/v1"
messages = [{"role": "system", "content": system_message}]
for human, assistant in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
# 모델 선택: 기본은 deepseek-chat
if deepseek_model_choice == "R1(deepseek-reasoner)":
model = "deepseek-reasoner"
else:
model = "deepseek-chat"
try:
response = openai.ChatCompletion.create(
model=model,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True
)
assistant_message = ""
# 새로운 대화 항목을 추가하고 초기값을 스트리밍하면서 갱신
chat_history.append((message, assistant_message))
yield chat_history
for chunk in response:
# "content"가 None인 경우 빈 문자열로 처리하여 오류 방지
delta = chunk.choices[0].delta.get("content") or ""
assistant_message += delta
chat_history[-1] = (message, assistant_message)
yield chat_history
return
except Exception as e:
error_message = f"오류가 발생했습니다: {str(e)}"
chat_history.append((message, error_message))
yield chat_history
return
def clear_conversation():
return []
# --------------------------------------------
# Gradio 앱 시작
# --------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Prompting AI Chatbot")
gr.Markdown("언어모델별 프롬프트 테스트 챗봇입니다.")
# --------------------------------------------------
# 일반 모델 관련 UI/기능 제거 (요청 사항에 따라 삭제)
# --------------------------------------------------
# Cohere Command R+
with gr.Tab("Cohere Command R+"):
with gr.Row():
cohere_system_message = gr.Textbox(
value="""반드시 한글로 답변할 것.
너는 최고의 비서이다.
내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.
""",
label="System Message",
lines=3
)
cohere_max_tokens = gr.Slider(minimum=100, maximum=8000, value=2000, step=100, label="Max new tokens")
cohere_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
cohere_top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
)
cohere_chatbot = gr.Chatbot(height=600)
cohere_msg = gr.Textbox(label="메세지를 입력하세요")
with gr.Row():
cohere_submit_button = gr.Button("전송")
cohere_clear_button = gr.Button("대화 내역 지우기")
inputs_for_cohere = [
cohere_msg,
cohere_chatbot,
cohere_system_message,
cohere_max_tokens,
cohere_temperature,
cohere_top_p
]
cohere_msg.submit(cohere_respond, inputs_for_cohere, cohere_chatbot)
cohere_submit_button.click(cohere_respond, inputs_for_cohere, cohere_chatbot)
cohere_clear_button.click(clear_conversation, outputs=cohere_chatbot, queue=False)
# ChatGPT
with gr.Tab("ChatGPT"):
with gr.Row():
chatgpt_system_message = gr.Textbox(
value="""반드시 한글로 답변할 것.
너는 ChatGPT, OpenAI에서 개발한 언어 모델이다.
내가 요구하는 것을 최대한 자세하고 정확하게 답변하라.
""",
label="System Message",
lines=3
)
chatgpt_max_tokens = gr.Slider(minimum=100, maximum=5000, value=2000, step=100, label="Max Tokens")
chatgpt_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
chatgpt_top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
)
chatgpt_chatbot = gr.Chatbot(height=600)
chatgpt_msg = gr.Textbox(label="메세지를 입력하세요")
with gr.Row():
chatgpt_submit_button = gr.Button("전송")
chatgpt_clear_button = gr.Button("대화 내역 지우기")
inputs_for_chatgpt = [
chatgpt_msg,
chatgpt_chatbot,
chatgpt_system_message,
chatgpt_max_tokens,
chatgpt_temperature,
chatgpt_top_p
]
chatgpt_msg.submit(chatgpt_respond, inputs_for_chatgpt, chatgpt_chatbot)
chatgpt_submit_button.click(chatgpt_respond, inputs_for_chatgpt, chatgpt_chatbot)
chatgpt_clear_button.click(clear_conversation, outputs=chatgpt_chatbot, queue=False)
# Claude
with gr.Tab("Claude"):
with gr.Row():
claude_system_message = gr.Textbox(
value="""반드시 한글로 답변할 것.
너는 Anthropic에서 개발한 클로드이다.
최대한 정확하고 친절하게 답변하라.
""",
label="System Message",
lines=3
)
claude_max_tokens = gr.Slider(minimum=100, maximum=8000, value=2000, step=100, label="Max Tokens")
claude_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
claude_top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
)
claude_chatbot = gr.Chatbot(height=600)
claude_msg = gr.Textbox(label="메세지를 입력하세요")
with gr.Row():
claude_submit_button = gr.Button("전송")
claude_clear_button = gr.Button("대화 내역 지우기")
inputs_for_claude = [
claude_msg,
claude_chatbot,
claude_system_message,
claude_max_tokens,
claude_temperature,
claude_top_p
]
claude_msg.submit(claude_respond, inputs_for_claude, claude_chatbot)
claude_submit_button.click(claude_respond, inputs_for_claude, claude_chatbot)
claude_clear_button.click(clear_conversation, outputs=claude_chatbot, queue=False)
# DeepSeek
with gr.Tab("DeepSeek"):
with gr.Row():
deepseek_system_message = gr.Textbox(
value="""반드시 한글로 답변할 것.
너는 DeepSeek-V3, 최고의 언어 모델이다.
내가 요구하는 것을 최대한 자세하고 정확하게 답변하라.
""",
label="System Message",
lines=3
)
deepseek_model_choice = gr.Radio(
choices=["V3(deepseek-chat)", "R1(deepseek-reasoner)"],
value="V3(deepseek-chat)",
label="모델 선택"
)
deepseek_max_tokens = gr.Slider(minimum=100, maximum=8000, value=2000, step=100, label="Max Tokens")
deepseek_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
deepseek_top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
)
deepseek_chatbot = gr.Chatbot(height=600)
deepseek_msg = gr.Textbox(label="메세지를 입력하세요")
with gr.Row():
deepseek_submit_button = gr.Button("전송")
deepseek_clear_button = gr.Button("대화 내역 지우기")
inputs_for_deepseek = [
deepseek_msg,
deepseek_chatbot,
deepseek_system_message,
deepseek_model_choice,
deepseek_max_tokens,
deepseek_temperature,
deepseek_top_p
]
# Textbox.submit에서는 stream 인자를 제거합니다.
deepseek_msg.submit(deepseek_respond, inputs_for_deepseek, deepseek_chatbot)
deepseek_submit_button.click(deepseek_respond, inputs_for_deepseek, deepseek_chatbot)
deepseek_clear_button.click(clear_conversation, outputs=deepseek_chatbot, queue=False)
if __name__ == "__main__":
demo.launch() |