File size: 14,079 Bytes
b34f0d5
7dcc8af
9bab38e
5900591
7dcc8af
b34f0d5
04d26dc
 
 
85ca627
f1d1009
 
85ca627
f1d1009
85ca627
7dcc8af
85ca627
f1d1009
04d26dc
 
c65ce97
 
7dcc8af
b34f0d5
092cc1c
 
 
 
 
 
 
 
85ca627
0b80f96
85ca627
 
04d26dc
092cc1c
85ca627
092cc1c
 
 
 
8144da3
092cc1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bab38e
 
 
 
 
 
 
 
f1d1009
85ca627
 
f1d1009
85ca627
f1d1009
85ca627
9bab38e
 
85ca627
f1d1009
9bab38e
 
 
 
 
 
 
 
8144da3
9bab38e
 
 
 
 
 
 
 
 
 
 
 
 
5900591
 
 
 
 
 
 
 
 
85ca627
 
5900591
85ca627
5900591
85ca627
5900591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8987bf9
5900591
 
 
 
 
85ca627
 
8987bf9
 
5900591
85ca627
5900591
85ca627
8987bf9
 
5900591
 
 
 
 
 
 
 
 
 
8987bf9
 
 
 
 
 
5900591
 
8987bf9
5900591
 
 
 
8987bf9
5900591
8987bf9
 
5900591
8987bf9
 
c757549
 
8987bf9
 
 
 
5900591
 
 
8987bf9
 
f1d1009
7dcc8af
 
b34f0d5
85ca627
 
 
b34f0d5
7dcc8af
 
f1d1009
85ca627
 
 
f1d1009
04d26dc
23d8e09
 
 
7dcc8af
 
 
 
 
 
b34f0d5
2c0bbf8
 
23d8e09
 
 
 
 
 
 
8144da3
23d8e09
 
 
 
 
 
f1d1009
 
 
0b80f96
f1d1009
 
85ca627
f1d1009
 
 
23d8e09
85ca627
04d26dc
9bab38e
 
 
 
 
 
 
 
 
 
2c0bbf8
9bab38e
 
 
 
 
 
 
 
8144da3
9bab38e
 
 
 
 
 
f1d1009
85ca627
 
 
 
 
 
f1d1009
 
 
9bab38e
6d1479a
04d26dc
5900591
 
 
 
 
 
 
 
 
 
2c0bbf8
5900591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85ca627
5900591
 
 
 
 
04d26dc
5900591
 
 
 
 
 
 
 
 
 
8987bf9
 
 
 
 
2c0bbf8
5900591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85ca627
 
 
8987bf9
85ca627
 
 
5900591
04d26dc
4508cee
dbfe290
5900591
 
b34f0d5
04d26dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import gradio as gr
from huggingface_hub import InferenceClient
import openai
import anthropic
import os

# Cohere Command R+ 모델 ID 정의
COHERE_MODEL = "CohereForAI/c4ai-command-r-plus-08-2024"

def get_client(model_name: str):
    """
    모델 이름에 맞춰 InferenceClient 생성.
    HuggingFace 토큰은 os.environ.get("HF_TOKEN")을 통해 환경변수로 가져온다.
    """
    hf_token = os.environ.get("HF_TOKEN")
    if not hf_token:
        raise ValueError("HuggingFace API 토큰이 필요합니다. (환경변수 HF_TOKEN 미설정)")

    if model_name == "Cohere Command R+":
        model_id = COHERE_MODEL
    else:
        raise ValueError("유효하지 않은 모델 이름입니다.")
    return InferenceClient(model_id, token=hf_token)

def cohere_respond(
    message,
    chat_history,
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    """
    Cohere Command R+ 모델 응답 함수.
    HF 토큰은 함수 내부에서 os.environ을 통해 불러온다.
    """
    model_name = "Cohere Command R+"
    try:
        client = get_client(model_name)
    except ValueError as e:
        chat_history.append((message, str(e)))
        return chat_history

    messages = [{"role": "system", "content": system_message}]
    for human, assistant in chat_history:
        if human:
            messages.append({"role": "user", "content": human})
        if assistant:
            messages.append({"role": "assistant", "content": assistant})

    messages.append({"role": "user", "content": message})

    try:
        response_full = client.chat_completion(
            messages,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
        )
        assistant_message = response_full.choices[0].message.content
        chat_history.append((message, assistant_message))
        return chat_history
    except Exception as e:
        error_message = f"오류가 발생했습니다: {str(e)}"
        chat_history.append((message, error_message))
        return chat_history

def chatgpt_respond(
    message,
    chat_history,
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    """
    ChatGPT 모델 응답 함수.
    OpenAI 토큰은 함수 내부에서 os.environ을 통해 불러온다.
    """
    openai_token = os.environ.get("OPENAI_TOKEN")
    if not openai_token:
        chat_history.append((message, "OpenAI API 토큰이 필요합니다. (환경변수 OPENAI_TOKEN 미설정)"))
        return chat_history

    openai.api_key = openai_token  # 환경변수에서 받은 토큰 사용

    messages = [{"role": "system", "content": system_message}]
    for human, assistant in chat_history:
        messages.append({"role": "user", "content": human})
        messages.append({"role": "assistant", "content": assistant})
    messages.append({"role": "user", "content": message})

    try:
        response = openai.ChatCompletion.create(
            model="gpt-4o-mini",  # 또는 다른 모델 ID 사용
            messages=messages,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
        )
        assistant_message = response.choices[0].message['content']
        chat_history.append((message, assistant_message))
        return chat_history
    except Exception as e:
        error_message = f"오류가 발생했습니다: {str(e)}"
        chat_history.append((message, error_message))
        return chat_history

def claude_respond(
    message,
    chat_history,
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    """
    Claude 모델 응답 함수.
    Claude 토큰은 함수 내부에서 os.environ을 통해 불러온다.
    """
    claude_token = os.environ.get("CLAUDE_TOKEN")
    if not claude_token:
        chat_history.append((message, "Claude API 토큰이 필요합니다. (환경변수 CLAUDE_TOKEN 미설정)"))
        return chat_history

    try:
        client = anthropic.Anthropic(api_key=claude_token)
        
        response = client.messages.create(
            model="claude-3-haiku-20240307",
            max_tokens=max_tokens,
            temperature=temperature,
            system=system_message,
            messages=[
                {
                    "role": "user",
                    "content": message
                }
            ]
        )
        
        assistant_message = response.content[0].text
        chat_history.append((message, assistant_message))
        return chat_history
    except Exception as e:
        error_message = f"오류가 발생했습니다: {str(e)}"
        chat_history.append((message, error_message))
        return chat_history

def deepseek_respond(
    message,
    chat_history,
    system_message,
    deepseek_model_choice,
    max_tokens,
    temperature,
    top_p,
):
    """
    DeepSeek 모델 응답 함수.
    DeepSeek 토큰은 함수 내부에서 os.environ을 통해 불러온다.
    deepseek_model_choice에 따라 deepseek-chat 또는 deepseek-reasoner를 선택하며,
    스트리밍 방식으로 응답을 받아옵니다.
    """
    deepseek_token = os.environ.get("DEEPSEEK_TOKEN")
    if not deepseek_token:
        chat_history.append((message, "DeepSeek API 토큰이 필요합니다. (환경변수 DEEPSEEK_TOKEN 미설정)"))
        yield chat_history
        return

    openai.api_key = deepseek_token
    openai.api_base = "https://api.deepseek.com/v1"

    messages = [{"role": "system", "content": system_message}]
    for human, assistant in chat_history:
        messages.append({"role": "user", "content": human})
        messages.append({"role": "assistant", "content": assistant})
    messages.append({"role": "user", "content": message})

    # 모델 선택: 기본은 deepseek-chat
    if deepseek_model_choice == "R1(deepseek-reasoner)":
        model = "deepseek-reasoner"
    else:
        model = "deepseek-chat"

    try:
        response = openai.ChatCompletion.create(
            model=model,
            messages=messages,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            stream=True
        )
        assistant_message = ""
        # 새로운 대화 항목을 추가하고 초기값을 스트리밍하면서 갱신
        chat_history.append((message, assistant_message))
        yield chat_history
        for chunk in response:
            # "content"가 None인 경우 빈 문자열로 처리하여 오류 방지
            delta = chunk.choices[0].delta.get("content") or ""
            assistant_message += delta
            chat_history[-1] = (message, assistant_message)
            yield chat_history
        return
    except Exception as e:
        error_message = f"오류가 발생했습니다: {str(e)}"
        chat_history.append((message, error_message))
        yield chat_history
        return

def clear_conversation():
    return []

# --------------------------------------------
# Gradio 앱 시작
# --------------------------------------------
with gr.Blocks() as demo:
    gr.Markdown("# Prompting AI Chatbot")
    gr.Markdown("언어모델별 프롬프트 테스트 챗봇입니다.")

    # --------------------------------------------------
    # 일반 모델 관련 UI/기능 제거 (요청 사항에 따라 삭제)
    # --------------------------------------------------

    # Cohere Command R+
    with gr.Tab("Cohere Command R+"):
        with gr.Row():
            cohere_system_message = gr.Textbox(
                value="""반드시 한글로 답변할 것.
너는 최고의 비서이다.
내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.
""",
                label="System Message",
                lines=3
            )
            cohere_max_tokens = gr.Slider(minimum=100, maximum=8000, value=2000, step=100, label="Max new tokens")
            cohere_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
            cohere_top_p = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-P",
            )
        
        cohere_chatbot = gr.Chatbot(height=600)
        cohere_msg = gr.Textbox(label="메세지를 입력하세요")
        with gr.Row():
            cohere_submit_button = gr.Button("전송")
            cohere_clear_button = gr.Button("대화 내역 지우기")
        
        inputs_for_cohere = [
            cohere_msg, 
            cohere_chatbot, 
            cohere_system_message, 
            cohere_max_tokens, 
            cohere_temperature, 
            cohere_top_p
        ]
        cohere_msg.submit(cohere_respond, inputs_for_cohere, cohere_chatbot)
        cohere_submit_button.click(cohere_respond, inputs_for_cohere, cohere_chatbot)
        cohere_clear_button.click(clear_conversation, outputs=cohere_chatbot, queue=False)

    # ChatGPT
    with gr.Tab("ChatGPT"):
        with gr.Row():
            chatgpt_system_message = gr.Textbox(
                value="""반드시 한글로 답변할 것.
너는 ChatGPT, OpenAI에서 개발한 언어 모델이다.
내가 요구하는 것을 최대한 자세하고 정확하게 답변하라.
""",
                label="System Message",
                lines=3
            )
            chatgpt_max_tokens = gr.Slider(minimum=100, maximum=5000, value=2000, step=100, label="Max Tokens")
            chatgpt_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
            chatgpt_top_p = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-P",
            )
        
        chatgpt_chatbot = gr.Chatbot(height=600)
        chatgpt_msg = gr.Textbox(label="메세지를 입력하세요")
        with gr.Row():
            chatgpt_submit_button = gr.Button("전송")
            chatgpt_clear_button = gr.Button("대화 내역 지우기")
        
        inputs_for_chatgpt = [
            chatgpt_msg,
            chatgpt_chatbot,
            chatgpt_system_message,
            chatgpt_max_tokens,
            chatgpt_temperature,
            chatgpt_top_p
        ]
        chatgpt_msg.submit(chatgpt_respond, inputs_for_chatgpt, chatgpt_chatbot)
        chatgpt_submit_button.click(chatgpt_respond, inputs_for_chatgpt, chatgpt_chatbot)
        chatgpt_clear_button.click(clear_conversation, outputs=chatgpt_chatbot, queue=False)

    # Claude
    with gr.Tab("Claude"):
        with gr.Row():
            claude_system_message = gr.Textbox(
                value="""반드시 한글로 답변할 것.
너는 Anthropic에서 개발한 클로드이다.
최대한 정확하고 친절하게 답변하라.
""",
                label="System Message",
                lines=3
            )
            claude_max_tokens = gr.Slider(minimum=100, maximum=8000, value=2000, step=100, label="Max Tokens")
            claude_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
            claude_top_p = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-P",
            )
        
        claude_chatbot = gr.Chatbot(height=600)
        claude_msg = gr.Textbox(label="메세지를 입력하세요")
        with gr.Row():
            claude_submit_button = gr.Button("전송")
            claude_clear_button = gr.Button("대화 내역 지우기")
        
        inputs_for_claude = [
            claude_msg, 
            claude_chatbot, 
            claude_system_message, 
            claude_max_tokens, 
            claude_temperature, 
            claude_top_p
        ]
        claude_msg.submit(claude_respond, inputs_for_claude, claude_chatbot)
        claude_submit_button.click(claude_respond, inputs_for_claude, claude_chatbot)
        claude_clear_button.click(clear_conversation, outputs=claude_chatbot, queue=False)

    # DeepSeek
    with gr.Tab("DeepSeek"):
        with gr.Row():
            deepseek_system_message = gr.Textbox(
                value="""반드시 한글로 답변할 것.
너는 DeepSeek-V3, 최고의 언어 모델이다.
내가 요구하는 것을 최대한 자세하고 정확하게 답변하라.
""",
                label="System Message",
                lines=3
            )
            deepseek_model_choice = gr.Radio(
                choices=["V3(deepseek-chat)", "R1(deepseek-reasoner)"],
                value="V3(deepseek-chat)",
                label="모델 선택"
            )
            deepseek_max_tokens = gr.Slider(minimum=100, maximum=8000, value=2000, step=100, label="Max Tokens")
            deepseek_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
            deepseek_top_p = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-P",
            )
        
        deepseek_chatbot = gr.Chatbot(height=600)
        deepseek_msg = gr.Textbox(label="메세지를 입력하세요")
        with gr.Row():
            deepseek_submit_button = gr.Button("전송")
            deepseek_clear_button = gr.Button("대화 내역 지우기")
        
        inputs_for_deepseek = [
            deepseek_msg,
            deepseek_chatbot,
            deepseek_system_message,
            deepseek_model_choice,
            deepseek_max_tokens,
            deepseek_temperature,
            deepseek_top_p
        ]
        # Textbox.submit에서는 stream 인자를 제거합니다.
        deepseek_msg.submit(deepseek_respond, inputs_for_deepseek, deepseek_chatbot)
        deepseek_submit_button.click(deepseek_respond, inputs_for_deepseek, deepseek_chatbot)
        deepseek_clear_button.click(clear_conversation, outputs=deepseek_chatbot, queue=False)

if __name__ == "__main__":
    demo.launch()