Spaces:
Running
Running
import express from "express"; | |
import os from "os"; | |
import morgan from "morgan"; | |
import bytes from "bytes"; | |
import { FormData, Blob } from "formdata-node"; | |
import { fileTypeFromBuffer } from "file-type"; | |
import { Client } from "@gradio/client"; | |
const app = express(); | |
app.set('json spaces', 4); | |
app.use(morgan('dev')); | |
app.use(express.json({ limit: "500mb" })); | |
app.use(express.urlencoded({ limit: '500mb', extended: true })); | |
app.use((req, res, next) => { | |
next() | |
}) | |
const apikey = "@SadTeam77" | |
app.all('/', (req, res) => { | |
const status = {} | |
const used = process.memoryUsage() | |
for (let key in used) status[key] = formatSize(used[key]) | |
const totalmem = os.totalmem() | |
const freemem = os.freemem() | |
status.memoryUsage = `${formatSize(totalmem - freemem)} / ${formatSize(totalmem)}` | |
console.log("YOUR IP: " + req.ip) | |
res.json({ | |
creator: "@SadTeams", | |
message: 'Hello World!!', | |
uptime: new Date(process.uptime() * 1000).toUTCString().split(' ')[4], | |
status | |
}) | |
}) | |
app.post('/api/img2img', async (req, res) => { | |
try { | |
console.log(req.body) | |
const { images, prompt, status } = req.body | |
if (!images) return res.json({ success: false, message: 'Required an images!' }) | |
if (!prompt) return res.json({ succese: false, message: 'Require an Promot text Image!'}) | |
if (!status) return res.json({ success: false, message: 'Required an status text!' }) | |
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' }) | |
if (/^(https?|http):\/\//i.test(images)) { | |
const data_img = await axios.request({ | |
method: "GET", | |
url: images, | |
responseType: "arraybuffer" | |
}) | |
const response = await processImage2Img(data_img.data, prompt) | |
const type_img = await fileType.fromBuffer(response) | |
res.setHeader('Content-Type', type_img.mime) | |
res.send(response) | |
} else if (images && typeof images == 'string' && isBase64(images)) { | |
const response = await processImage2Img(Buffer.from(images, "base64"), prompt) | |
const type_img = await fileType.fromBuffer(response) | |
res.setHeader('Content-Type', type_img.mime) | |
res.send(response) | |
} else { | |
res.json({ | |
success: false, message: 'No url or base64 detected!!' | |
}) | |
} | |
} catch (e) { | |
console.log(e) | |
e = String(e) | |
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e }) | |
} | |
}) | |
const PORT = process.env.PORT || 7860 | |
app.listen(PORT, () => { | |
console.log('App running on port', PORT) | |
}) | |
function formatSize(num) { | |
return bytes(+num || 0, { unitSeparator: ' ' }) | |
} | |
function isBase64(str) { | |
try { | |
return btoa(atob(str)) === str | |
} catch { | |
return false | |
} | |
} | |
async function processImage2Img(imgBuffer, prompt) { | |
return new Promise(async (resolve, reject) => { | |
try { | |
const type = fileTypeFromBuffer(imgBuffer); | |
const convertingBlob = new Blob([imgBuffer], { type: type.mime }); | |
const form = new FormData(); | |
form.append('image', convertingBlob, "image" + type.ext); | |
const app = await Client.connect("Manjushri/SDXL-Turbo-Img2Img-CPU"); | |
const result = await app.predict("/predict", [ | |
form, // blob in 'Raw Image.' Image component | |
prompt, // string in 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum' Textbox component | |
1, // number (numeric value between 1 and 5) in 'Number of Iterations' Slider component | |
987654321987654321, // number (numeric value between 0 and 987654321987654321) in 'Seed' Slider component | |
0.1, // number (numeric value between 0.1 and 1) in 'Strength' Slider component | |
]); | |
resolve(result.data); | |
} catch(e) { | |
reject(e.message); | |
} | |
}); | |
} |