Helper-esm / index.js
Khrisna's picture
Update index.js
79a8582 verified
raw
history blame
3.8 kB
import express from "express";
import os from "os";
import morgan from "morgan";
import bytes from "bytes";
import { FormData, Blob } from "formdata-node";
import { fileTypeFromBuffer } from "file-type";
import { Client } from "@gradio/client";
const app = express();
app.set('json spaces', 4);
app.use(morgan('dev'));
app.use(express.json({ limit: "500mb" }));
app.use(express.urlencoded({ limit: '500mb', extended: true }));
app.use((req, res, next) => {
next()
})
const apikey = "@SadTeam77"
app.all('/', (req, res) => {
const status = {}
const used = process.memoryUsage()
for (let key in used) status[key] = formatSize(used[key])
const totalmem = os.totalmem()
const freemem = os.freemem()
status.memoryUsage = `${formatSize(totalmem - freemem)} / ${formatSize(totalmem)}`
console.log("YOUR IP: " + req.ip)
res.json({
creator: "@SadTeams",
message: 'Hello World!!',
uptime: new Date(process.uptime() * 1000).toUTCString().split(' ')[4],
status
})
})
app.post('/api/img2img', async (req, res) => {
try {
console.log(req.body)
const { images, prompt, status } = req.body
if (!images) return res.json({ success: false, message: 'Required an images!' })
if (!prompt) return res.json({ succese: false, message: 'Require an Promot text Image!'})
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
if (/^(https?|http):\/\//i.test(images)) {
const data_img = await axios.request({
method: "GET",
url: images,
responseType: "arraybuffer"
})
const response = await processImage2Img(data_img.data, prompt)
const type_img = await fileType.fromBuffer(response)
res.setHeader('Content-Type', type_img.mime)
res.send(response)
} else if (images && typeof images == 'string' && isBase64(images)) {
const response = await processImage2Img(Buffer.from(images, "base64"), prompt)
const type_img = await fileType.fromBuffer(response)
res.setHeader('Content-Type', type_img.mime)
res.send(response)
} else {
res.json({
success: false, message: 'No url or base64 detected!!'
})
}
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
const PORT = process.env.PORT || 7860
app.listen(PORT, () => {
console.log('App running on port', PORT)
})
function formatSize(num) {
return bytes(+num || 0, { unitSeparator: ' ' })
}
function isBase64(str) {
try {
return btoa(atob(str)) === str
} catch {
return false
}
}
async function processImage2Img(imgBuffer, prompt) {
return new Promise(async (resolve, reject) => {
try {
const type = fileTypeFromBuffer(imgBuffer);
const convertingBlob = new Blob([imgBuffer], { type: type.mime });
const form = new FormData();
form.append('image', convertingBlob, "image" + type.ext);
const app = await Client.connect("Manjushri/SDXL-Turbo-Img2Img-CPU");
const result = await app.predict("/predict", [
form, // blob in 'Raw Image.' Image component
prompt, // string in 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum' Textbox component
1, // number (numeric value between 1 and 5) in 'Number of Iterations' Slider component
987654321987654321, // number (numeric value between 0 and 987654321987654321) in 'Seed' Slider component
0.1, // number (numeric value between 0.1 and 1) in 'Strength' Slider component
]);
resolve(result.data);
} catch(e) {
reject(e.message);
}
});
}