Spaces:
Sleeping
Sleeping
File size: 7,830 Bytes
3f2aeda a93b6a1 a856a85 dcd36fb fe6ce24 23f730c 26a38d9 8d33351 85f6d3b 3f2aeda 7b34a09 3f2aeda 7b34a09 180e271 0ab6f43 3f2aeda 0ab6f43 79a8582 0ab6f43 f6a84d4 0ab6f43 f6a84d4 0ab6f43 8d33351 85f6d3b 8d33351 85f6d3b 8d33351 85f6d3b c1b6343 e0bed5d c1b6343 8d33351 aa8aa5a c1b6343 e0bed5d c1b6343 8d33351 10cb96e 7b34a09 655d206 7b34a09 10cb96e 7b34a09 c3a48d6 c3ef673 c3a48d6 7b34a09 c3a48d6 7b34a09 41a98fd 886a675 41a98fd 3f2aeda bcbd89a 0ab6f43 7e0ffd4 3dca5ad 180e271 0ab6f43 3763082 c3fed7a 3763082 0ab6f43 3763082 0ab6f43 c3a48d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import express from "express";
import os from "os";
import morgan from "morgan";
import bytes from "bytes";
import axios from "axios";
import { FormData, Blob } from "formdata-node";
import { fileTypeFromBuffer } from "file-type";
import { Client } from "@gradio/client";
import { stablediff } from "./lib/diffusion.js";
import { askOpenGPT4o } from "./lib/chatgpt.js";
import { processImageUpscaler } from "./lib/enchance.js";
const app = express();
app.set('json spaces', 4);
app.use(morgan('dev'));
app.use(express.json({ limit: "500mb" }));
app.use(express.urlencoded({ limit: '500mb', extended: true }));
app.use((req, res, next) => {
next()
});
const apikey = "@SadTeam77";
app.all('/', (req, res) => {
const status = {}
const used = process.memoryUsage()
for (let key in used) status[key] = formatSize(used[key])
const totalmem = os.totalmem()
const freemem = os.freemem()
status.memoryUsage = `${formatSize(totalmem - freemem)} / ${formatSize(totalmem)}`
console.log("YOUR IP: " + req.ip)
res.json({
creator: "@SadTeams",
message: 'Hello World!!',
uptime: new Date(process.uptime() * 1000).toUTCString().split(' ')[4],
status
})
})
app.post('/api/img2img', async (req, res) => {
try {
console.log(req.body)
const { images, prompt, status } = req.body
if (!images) return res.json({ success: false, message: 'Required an images!' })
if (!prompt) return res.json({ succese: false, message: 'Require an Promot text Image!'})
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
if (/^(https?|http):\/\//i.test(images)) {
const data_img = await axios.request({
method: "GET",
url: images,
responseType: "arraybuffer"
})
const response = await processImage2Img(data_img.data, prompt)
//const type_img = await fileTypeFromBuffer(response)
//res.setHeader('Content-Type', type_img.mime)
res.json(response)
} else if (images && typeof images == 'string' && isBase64(images)) {
const response = await processImage2Img(Buffer.from(images, "base64"), prompt)
//const type_img = await fileTypeFromBuffer(response)
//res.setHeader('Content-Type', type_img.mime)
res.json(response)
} else {
res.json({
success: false, message: 'No url or base64 detected!!'
})
}
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/api/upscaler', async (req, res) => {
try {
console.log(req.body)
const { images, filenames, mimetype, status } = req.body
if (!images) return res.json({ success: false, message: 'Required an images!' })
if (!filenames) return res.json({ success: false, message: 'Required an filenames!' })
if (!mimetype) return res.json({ success: false, message: 'Required an mimetype!' })
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
if (/^(https?|http):\/\//i.test(images)) {
const data_img = await axios.request({
method: "GET",
url: images,
responseType: "arraybuffer"
})
const response = await processImageUpscaler({buffer: data_img.data, method: "enchance", filenames, mimetype})
//const type_img = await fileTypeFromBuffer(response)
//res.setHeader('Content-Type', type_img.mime)
res.json(response)
} else if (images && typeof images == 'string' && isBase64(images)) {
const response = await processImageUpscaler({buffer: Buffer.from(images, "base64"), method: "enchance", filenames, mimetype})
//const type_img = await fileTypeFromBuffer(response)
//res.setHeader('Content-Type', type_img.mime)
res.json(response)
} else {
res.json({
success: false, message: 'No url or base64 detected!!'
})
}
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/api/openai/gpt4', async (req, res) => {
try {
console.log(req.body)
const { prompt, images, status } = req.body
if (!prompt) return res.json({ succese: false, message: 'Require an Promot text!'})
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
if(images) {
if (/^(https?|http):\/\//i.test(images)) {
const data_img = await axios.request({
method: "GET",
url: images,
responseType: "arraybuffer"
})
const response = await askOpenGPT4o(prompt, data_img.data)
//const type_img = await fileTypeFromBuffer(response)
//res.setHeader('Content-Type', type_img.mime)
res.json({
status: true,
result: response
})
} else if (images && typeof images == 'string' && isBase64(images)) {
const response = await askOpenGPT4o(prompt, Buffer.from(images, "base64"))
//const type_img = await fileTypeFromBuffer(response)
//res.setHeader('Content-Type', type_img.mime)
res.json({
status: true,
result: response
})
} else {
res.json({
success: false, message: 'No url or base64 detected!!'
})
}
} else if(!images) {
const response = await askOpenGPT4o(prompt)
res.json({
status: true,
result: response
});
}
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/api/stabeldiff', async (req, res) => {
try {
console.log(req.body)
const { prompt, status } = req.body
if (!prompt) return res.json({ succese: false, message: 'Require an Promot text!'})
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
const response = await stablediff(prompt);
res.json({
status: true,
result: response
});
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
const PORT = process.env.PORT || 7860
app.listen(PORT, () => {
console.log('App running on port', PORT)
})
function formatSize(num) {
return bytes(+num || 0, { unitSeparator: ' ' })
}
function isBase64(str) {
try {
return btoa(atob(str)) === str
} catch {
return false
}
}
async function processImage2Img(imgBuffer, prompt) {
return new Promise(async (resolve, reject) => {
try {
const imageArray = Buffer.from(imgBuffer);
process.env.GRADIO_CLIENT_DEBUG = 'true';
const app = await Client.connect("Manjushri/SDXL-Turbo-Img2Img-CPU");
const result = await app.predict("/predict", [
imageArray, // binary input for the image
prompt, // string input for the prompt
1, // number input for the number of iterations
540388010706833800, // number input for the seed
0.3, // number input for the strength
]);
resolve(result.data);
} catch (e) {
reject(e.message);
}
});
} |