KenjieDec's picture
Fixed Demo | Improved Zoom Image
314a753 verified
raw
history blame
7.99 kB
import gradio as gr
import os.path
import numpy as np
from collections import OrderedDict
import torch
import cv2
from PIL import Image, ImageOps
import utils_image as util
from network_fbcnn import FBCNN as net
import requests
import datetime
from gradio_imageslider import ImageSlider
current_output = None
for model_path in ['fbcnn_gray.pth','fbcnn_color.pth']:
if os.path.exists(model_path):
print(f'{model_path} exists.')
else:
print("downloading model")
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path))
r = requests.get(url, allow_redirects=True)
open(model_path, 'wb').write(r.content)
def inference(input_img, is_gray, input_quality, zoom, x_shift, y_shift):
print("datetime:", datetime.datetime.utcnow())
input_img_width, input_img_height = Image.fromarray(input_img).size
print("img size:", (input_img_width, input_img_height))
if (input_img_width > 1080) or (input_img_height > 1080):
resize_ratio = min(1080/input_img_width, 1080/input_img_height)
resized_input = Image.fromarray(input_img).resize(
(int(input_img_width*resize_ratio) + (input_img_width*resize_ratio < 1),
int(input_img_height*resize_ratio) + (input_img_height*resize_ratio < 1)),
resample=Image.BICUBIC)
input_img = np.array(resized_input)
print("input image resized to:", resized_input.size)
if is_gray:
n_channels = 1
model_name = 'fbcnn_gray.pth'
else:
n_channels = 3
model_name = 'fbcnn_color.pth'
nc = [64,128,256,512]
nb = 4
input_quality = 100 - input_quality
model_path = model_name
if os.path.exists(model_path):
print(f'{model_path} already exists.')
else:
print("downloading model")
os.makedirs(os.path.dirname(model_path), exist_ok=True)
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path))
r = requests.get(url, allow_redirects=True)
open(model_path, 'wb').write(r.content)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("device:", device)
print(f'loading model from {model_path}')
model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R')
print("#model.load_state_dict(torch.load(model_path), strict=True)")
model.load_state_dict(torch.load(model_path), strict=True)
print("#model.eval()")
model.eval()
print("#for k, v in model.named_parameters()")
for k, v in model.named_parameters():
v.requires_grad = False
print("#model.to(device)")
model = model.to(device)
print("Model loaded.")
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnrb'] = []
print("#if n_channels")
if n_channels == 1:
open_cv_image = Image.fromarray(input_img)
open_cv_image = ImageOps.grayscale(open_cv_image)
open_cv_image = np.array(open_cv_image)
img = np.expand_dims(open_cv_image, axis=2)
elif n_channels == 3:
open_cv_image = np.array(input_img)
if open_cv_image.ndim == 2:
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_GRAY2RGB)
else:
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB)
print("#util.uint2tensor4(open_cv_image)")
img_L = util.uint2tensor4(open_cv_image)
print("#img_L.to(device)")
img_L = img_L.to(device)
print("#model(img_L)")
img_E, QF = model(img_L)
print("#util.tensor2single(img_E)")
img_E = util.tensor2single(img_E)
print("#util.single2uint(img_E)")
img_E = util.single2uint(img_E)
print("#torch.tensor([[1-input_quality/100]]).cuda() || torch.tensor([[1-input_quality/100]])")
qf_input = torch.tensor([[1-input_quality/100]]).cuda() if device == torch.device('cuda') else torch.tensor([[1-input_quality/100]])
print("#util.single2uint(img_E)")
img_E, QF = model(img_L, qf_input)
print("#util.tensor2single(img_E)")
img_E = util.tensor2single(img_E)
print("#util.single2uint(img_E)")
img_E = util.single2uint(img_E)
if img_E.ndim == 3:
img_E = img_E[:, :, [2, 1, 0]]
global current_output
current_output = img_E.copy()
print("--inference finished")
(in_img, out_img) = zoom_image(zoom, x_shift, y_shift, input_img, img_E)
print("--generating preview finished")
return img_E, (in_img, out_img)
def zoom_image(zoom, x_shift, y_shift, input_img, output_img = None):
global current_output
if output_img is None:
if current_output is None:
return None
output_img = current_output
img = Image.fromarray(input_img)
out_img = Image.fromarray(output_img)
img_w, img_h = img.size
zoom_factor = (100 - zoom) / 100
x_shift /= 100
y_shift /= 100
zoom_w, zoom_h = int(img_w * zoom_factor), int(img_h * zoom_factor)
x_offset = int((img_w - zoom_w) * x_shift)
y_offset = int((img_h - zoom_h) * y_shift)
crop_box = (x_offset, y_offset, x_offset + zoom_w, y_offset + zoom_h)
img = img.crop(crop_box).resize((img_w, img_h), Image.BILINEAR)
out_img = out_img.crop(crop_box).resize((img_w, img_h), Image.BILINEAR)
return (img, out_img)
with gr.Blocks() as demo:
gr.Markdown("# JPEG Artifacts Removal [FBCNN]")
with gr.Row():
input_img = gr.Image(label="Input Image")
output_img = gr.Image(label="Result")
is_gray = gr.Checkbox(label="Grayscale (Check this if your image is grayscale)")
input_quality = gr.Slider(1, 100, step=1, label="Intensity (Higher = stronger JPEG artifact removal)")
zoom = gr.Slider(10, 100, step=1, value=50, label="Zoom Percentage (0 = original size)")
x_shift = gr.Slider(0, 100, step=1, label="Horizontal shift Percentage (Before/After)")
y_shift = gr.Slider(0, 100, step=1, label="Vertical shift Percentage (Before/After)")
run = gr.Button("Run")
with gr.Row():
before_after = ImageSlider(label="Before/After", type="pil", value=None)
run.click(
inference,
inputs=[input_img, is_gray, input_quality, zoom, x_shift, y_shift],
outputs=[output_img, before_after]
)
gr.Examples([
["doraemon.jpg", False, 60, 58, 50, 50],
["tomandjerry.jpg", False, 60, 60, 57, 44],
["somepanda.jpg", True, 100, 70, 8, 24],
["cemetry.jpg", False, 70, 80, 76, 62],
["michelangelo_david.jpg", True, 30, 88, 53, 27],
["elon_musk.jpg", False, 45, 75, 33, 30],
["text.jpg", True, 70, 50, 11, 29]
], inputs=[input_img, is_gray, input_quality, zoom, x_shift, y_shift])
zoom.release(zoom_image, inputs=[zoom, x_shift, y_shift, input_img], outputs=[before_after])
x_shift.release(zoom_image, inputs=[zoom, x_shift, y_shift, input_img], outputs=[before_after])
y_shift.release(zoom_image, inputs=[zoom, x_shift, y_shift, input_img], outputs=[before_after])
gr.Markdown("""
JPEG Artifacts are noticeable distortions of images caused by JPEG lossy compression.
Note that this is not an AI Upscaler, but just a JPEG Compression Artifact Remover.
[Original Demo](https://huggingface.co/spaces/danielsapit/JPEG_Artifacts_Removal)
[FBCNN GitHub Repo](https://github.com/jiaxi-jiang/FBCNN)
[Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)](https://arxiv.org/abs/2109.14573)
[Jiaxi Jiang](https://jiaxi-jiang.github.io/),
[Kai Zhang](https://cszn.github.io/),
[Radu Timofte](http://people.ee.ethz.ch/~timofter/)
""")
demo.launch()