|
import gradio as gr
|
|
import os.path
|
|
import numpy as np
|
|
from collections import OrderedDict
|
|
import torch
|
|
import cv2
|
|
from PIL import Image, ImageOps
|
|
import utils_image as util
|
|
from network_fbcnn import FBCNN as net
|
|
import requests
|
|
import datetime
|
|
from gradio_imageslider import ImageSlider
|
|
|
|
current_output = None
|
|
for model_path in ['fbcnn_gray.pth','fbcnn_color.pth']:
|
|
if os.path.exists(model_path):
|
|
print(f'{model_path} exists.')
|
|
else:
|
|
print("downloading model")
|
|
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path))
|
|
r = requests.get(url, allow_redirects=True)
|
|
open(model_path, 'wb').write(r.content)
|
|
|
|
def inference(input_img, is_gray, input_quality, zoom, x_shift, y_shift):
|
|
|
|
print("datetime:", datetime.datetime.utcnow())
|
|
input_img_width, input_img_height = Image.fromarray(input_img).size
|
|
print("img size:", (input_img_width, input_img_height))
|
|
|
|
if (input_img_width > 1080) or (input_img_height > 1080):
|
|
resize_ratio = min(1080/input_img_width, 1080/input_img_height)
|
|
resized_input = Image.fromarray(input_img).resize(
|
|
(int(input_img_width*resize_ratio) + (input_img_width*resize_ratio < 1),
|
|
int(input_img_height*resize_ratio) + (input_img_height*resize_ratio < 1)),
|
|
resample=Image.BICUBIC)
|
|
input_img = np.array(resized_input)
|
|
print("input image resized to:", resized_input.size)
|
|
|
|
if is_gray:
|
|
n_channels = 1
|
|
model_name = 'fbcnn_gray.pth'
|
|
else:
|
|
n_channels = 3
|
|
model_name = 'fbcnn_color.pth'
|
|
nc = [64,128,256,512]
|
|
nb = 4
|
|
|
|
input_quality = 100 - input_quality
|
|
|
|
model_path = model_name
|
|
|
|
if os.path.exists(model_path):
|
|
print(f'{model_path} already exists.')
|
|
else:
|
|
print("downloading model")
|
|
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
|
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path))
|
|
r = requests.get(url, allow_redirects=True)
|
|
open(model_path, 'wb').write(r.content)
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
print("device:", device)
|
|
|
|
print(f'loading model from {model_path}')
|
|
|
|
model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R')
|
|
print("#model.load_state_dict(torch.load(model_path), strict=True)")
|
|
model.load_state_dict(torch.load(model_path), strict=True)
|
|
print("#model.eval()")
|
|
model.eval()
|
|
print("#for k, v in model.named_parameters()")
|
|
for k, v in model.named_parameters():
|
|
v.requires_grad = False
|
|
print("#model.to(device)")
|
|
model = model.to(device)
|
|
print("Model loaded.")
|
|
|
|
test_results = OrderedDict()
|
|
test_results['psnr'] = []
|
|
test_results['ssim'] = []
|
|
test_results['psnrb'] = []
|
|
|
|
print("#if n_channels")
|
|
if n_channels == 1:
|
|
open_cv_image = Image.fromarray(input_img)
|
|
open_cv_image = ImageOps.grayscale(open_cv_image)
|
|
open_cv_image = np.array(open_cv_image)
|
|
img = np.expand_dims(open_cv_image, axis=2)
|
|
elif n_channels == 3:
|
|
open_cv_image = np.array(input_img)
|
|
if open_cv_image.ndim == 2:
|
|
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_GRAY2RGB)
|
|
else:
|
|
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB)
|
|
|
|
print("#util.uint2tensor4(open_cv_image)")
|
|
img_L = util.uint2tensor4(open_cv_image)
|
|
|
|
print("#img_L.to(device)")
|
|
img_L = img_L.to(device)
|
|
|
|
print("#model(img_L)")
|
|
img_E, QF = model(img_L)
|
|
print("#util.tensor2single(img_E)")
|
|
img_E = util.tensor2single(img_E)
|
|
print("#util.single2uint(img_E)")
|
|
img_E = util.single2uint(img_E)
|
|
|
|
print("#torch.tensor([[1-input_quality/100]]).cuda() || torch.tensor([[1-input_quality/100]])")
|
|
qf_input = torch.tensor([[1-input_quality/100]]).cuda() if device == torch.device('cuda') else torch.tensor([[1-input_quality/100]])
|
|
print("#util.single2uint(img_E)")
|
|
img_E, QF = model(img_L, qf_input)
|
|
|
|
print("#util.tensor2single(img_E)")
|
|
img_E = util.tensor2single(img_E)
|
|
print("#util.single2uint(img_E)")
|
|
img_E = util.single2uint(img_E)
|
|
|
|
if img_E.ndim == 3:
|
|
img_E = img_E[:, :, [2, 1, 0]]
|
|
|
|
global current_output
|
|
current_output = img_E.copy()
|
|
print("--inference finished")
|
|
|
|
(in_img, out_img) = zoom_image(zoom, x_shift, y_shift, input_img, img_E)
|
|
print("--generating preview finished")
|
|
|
|
return img_E, (in_img, out_img)
|
|
|
|
def zoom_image(zoom, x_shift, y_shift, input_img, output_img = None):
|
|
global current_output
|
|
if output_img is None:
|
|
if current_output is None:
|
|
return None
|
|
output_img = current_output
|
|
|
|
img = Image.fromarray(input_img)
|
|
out_img = Image.fromarray(output_img)
|
|
|
|
img_w, img_h = img.size
|
|
zoom_factor = (100 - zoom) / 100
|
|
x_shift /= 100
|
|
y_shift /= 100
|
|
|
|
zoom_w, zoom_h = int(img_w * zoom_factor), int(img_h * zoom_factor)
|
|
x_offset = int((img_w - zoom_w) * x_shift)
|
|
y_offset = int((img_h - zoom_h) * y_shift)
|
|
|
|
crop_box = (x_offset, y_offset, x_offset + zoom_w, y_offset + zoom_h)
|
|
img = img.crop(crop_box).resize((img_w, img_h), Image.BILINEAR)
|
|
out_img = out_img.crop(crop_box).resize((img_w, img_h), Image.BILINEAR)
|
|
|
|
return (img, out_img)
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown("# JPEG Artifacts Removal [FBCNN]")
|
|
|
|
with gr.Row():
|
|
input_img = gr.Image(label="Input Image")
|
|
output_img = gr.Image(label="Result")
|
|
|
|
is_gray = gr.Checkbox(label="Grayscale (Check this if your image is grayscale)")
|
|
input_quality = gr.Slider(1, 100, step=1, label="Intensity (Higher = stronger JPEG artifact removal)")
|
|
zoom = gr.Slider(10, 100, step=1, value=50, label="Zoom Percentage (0 = original size)")
|
|
x_shift = gr.Slider(0, 100, step=1, label="Horizontal shift Percentage (Before/After)")
|
|
y_shift = gr.Slider(0, 100, step=1, label="Vertical shift Percentage (Before/After)")
|
|
|
|
run = gr.Button("Run")
|
|
|
|
with gr.Row():
|
|
before_after = ImageSlider(label="Before/After", type="pil", value=None)
|
|
|
|
run.click(
|
|
inference,
|
|
inputs=[input_img, is_gray, input_quality, zoom, x_shift, y_shift],
|
|
outputs=[output_img, before_after]
|
|
)
|
|
|
|
gr.Examples([
|
|
["doraemon.jpg", False, 60, 58, 50, 50],
|
|
["tomandjerry.jpg", False, 60, 60, 57, 44],
|
|
["somepanda.jpg", True, 100, 70, 8, 24],
|
|
["cemetry.jpg", False, 70, 80, 76, 62],
|
|
["michelangelo_david.jpg", True, 30, 88, 53, 27],
|
|
["elon_musk.jpg", False, 45, 75, 33, 30],
|
|
["text.jpg", True, 70, 50, 11, 29]
|
|
], inputs=[input_img, is_gray, input_quality, zoom, x_shift, y_shift])
|
|
|
|
zoom.release(zoom_image, inputs=[zoom, x_shift, y_shift, input_img], outputs=[before_after])
|
|
x_shift.release(zoom_image, inputs=[zoom, x_shift, y_shift, input_img], outputs=[before_after])
|
|
y_shift.release(zoom_image, inputs=[zoom, x_shift, y_shift, input_img], outputs=[before_after])
|
|
|
|
gr.Markdown("""
|
|
JPEG Artifacts are noticeable distortions of images caused by JPEG lossy compression.
|
|
Note that this is not an AI Upscaler, but just a JPEG Compression Artifact Remover.
|
|
|
|
[Original Demo](https://huggingface.co/spaces/danielsapit/JPEG_Artifacts_Removal)
|
|
[FBCNN GitHub Repo](https://github.com/jiaxi-jiang/FBCNN)
|
|
[Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)](https://arxiv.org/abs/2109.14573)
|
|
[Jiaxi Jiang](https://jiaxi-jiang.github.io/),
|
|
[Kai Zhang](https://cszn.github.io/),
|
|
[Radu Timofte](http://people.ee.ethz.ch/~timofter/)
|
|
""")
|
|
|
|
demo.launch() |