Update app.py
Browse files
app.py
CHANGED
@@ -3,15 +3,20 @@ import torch
|
|
3 |
from diffusers import I2VGenXLPipeline
|
4 |
from diffusers.utils import export_to_gif, load_image
|
5 |
import tempfile
|
|
|
6 |
|
|
|
|
|
7 |
def initialize_pipeline():
|
|
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
-
# Initialize the pipeline with CUDA support
|
11 |
-
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
|
12 |
-
pipeline.to(device)
|
|
|
13 |
|
14 |
-
def generate_gif(prompt, image, negative_prompt, num_inference_steps, guidance_scale, seed):
|
15 |
# Set the generator seed
|
16 |
generator = torch.Generator(device=device).manual_seed(seed)
|
17 |
|
@@ -43,22 +48,28 @@ def generate_gif(prompt, image, negative_prompt, num_inference_steps, guidance_s
|
|
43 |
return gif_path
|
44 |
|
45 |
# Create the Gradio interface with tabs
|
46 |
-
with gr.
|
|
|
|
|
47 |
with gr.TabItem("Generate from Text or Image"):
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
fn=generate_gif,
|
50 |
-
inputs=[
|
51 |
-
|
52 |
-
gr.Image(type="filepath", label="Input Image (optional)"),
|
53 |
-
gr.Textbox(lines=2, placeholder="Enter your negative prompt here...", label="Negative Prompt"),
|
54 |
-
gr.Slider(1, 100, step=1, value=50, label="Number of Inference Steps"),
|
55 |
-
gr.Slider(1, 20, step=0.1, value=9.0, label="Guidance Scale"),
|
56 |
-
gr.Number(label="Seed", value=8888)
|
57 |
-
],
|
58 |
-
outputs=gr.Video(label="Generated GIF"),
|
59 |
-
title="I2VGen-XL GIF Generator",
|
60 |
-
description="Generate a GIF from a text prompt and/or an image using the I2VGen-XL model."
|
61 |
)
|
62 |
|
63 |
# Launch the interface
|
64 |
-
demo.launch()
|
|
|
3 |
from diffusers import I2VGenXLPipeline
|
4 |
from diffusers.utils import export_to_gif, load_image
|
5 |
import tempfile
|
6 |
+
import spaces
|
7 |
|
8 |
+
# Function to initialize the pipeline with CUDA support
|
9 |
+
@spaces.GPU
|
10 |
def initialize_pipeline():
|
11 |
+
# Check if CUDA is available and set the device
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
+
# Initialize the pipeline with CUDA support
|
15 |
+
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
|
16 |
+
pipeline.to(device)
|
17 |
+
return pipeline, device
|
18 |
|
19 |
+
def generate_gif(pipeline, device, prompt, image, negative_prompt, num_inference_steps, guidance_scale, seed):
|
20 |
# Set the generator seed
|
21 |
generator = torch.Generator(device=device).manual_seed(seed)
|
22 |
|
|
|
48 |
return gif_path
|
49 |
|
50 |
# Create the Gradio interface with tabs
|
51 |
+
with gr.Blocks() as demo:
|
52 |
+
pipeline, device = initialize_pipeline()
|
53 |
+
|
54 |
with gr.TabItem("Generate from Text or Image"):
|
55 |
+
with gr.Row():
|
56 |
+
with gr.Column():
|
57 |
+
prompt = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
|
58 |
+
image = gr.Image(type="filepath", label="Input Image (optional)")
|
59 |
+
negative_prompt = gr.Textbox(lines=2, placeholder="Enter your negative prompt here...", label="Negative Prompt")
|
60 |
+
num_inference_steps = gr.Slider(1, 100, step=1, value=50, label="Number of Inference Steps")
|
61 |
+
guidance_scale = gr.Slider(1, 20, step=0.1, value=9.0, label="Guidance Scale")
|
62 |
+
seed = gr.Number(label="Seed", value=8888)
|
63 |
+
generate_button = gr.Button("Generate GIF")
|
64 |
+
|
65 |
+
with gr.Column():
|
66 |
+
output_video = gr.Video(label="Generated GIF")
|
67 |
+
|
68 |
+
generate_button.click(
|
69 |
fn=generate_gif,
|
70 |
+
inputs=[pipeline, device, prompt, image, negative_prompt, num_inference_steps, guidance_scale, seed],
|
71 |
+
outputs=output_video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
)
|
73 |
|
74 |
# Launch the interface
|
75 |
+
demo.launch()
|