mrcuddle's picture
Update app.py
30a8deb verified
raw
history blame
2.79 kB
import gradio as gr
import torch
from diffusers import I2VGenXLPipeline
from diffusers.utils import export_to_gif, load_image
import tempfile
import spaces
@spaces.GPU
def initialize_pipeline():
# Check if CUDA is available and set the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize the pipeline with CUDA support
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
pipeline.to(device)
return pipeline, device
def generate_gif(prompt, image, negative_prompt, num_inference_steps, guidance_scale, seed):
# Initialize the pipeline and device within the function
pipeline, device = initialize_pipeline()
# Set the generator seed
generator = torch.Generator(device=device).manual_seed(seed)
# Check if an image is provided
if image is not None:
image = load_image(image).convert("RGB")
frames = pipeline(
prompt=prompt,
image=image,
num_inference_steps=num_inference_steps,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
generator=generator
).frames[0]
else:
frames = pipeline(
prompt=prompt,
num_inference_steps=num_inference_steps,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
generator=generator
).frames[0]
# Export to GIF
with tempfile.NamedTemporaryFile(delete=False, suffix=".gif") as tmp_gif:
gif_path = tmp_gif.name
export_to_gif(frames, gif_path)
return gif_path
# Create the Gradio interface with tabs
with gr.Blocks() as demo:
with gr.TabItem("Generate from Text or Image"):
with gr.Row():
with gr.Column():
prompt = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
image = gr.Image(type="filepath", label="Input Image (optional)")
negative_prompt = gr.Textbox(lines=2, placeholder="Enter your negative prompt here...", label="Negative Prompt")
num_inference_steps = gr.Slider(1, 100, step=1, value=50, label="Number of Inference Steps")
guidance_scale = gr.Slider(1, 20, step=0.1, value=9.0, label="Guidance Scale")
seed = gr.Number(label="Seed", value=8888)
generate_button = gr.Button("Generate GIF")
with gr.Column():
output_video = gr.Video(label="Generated GIF")
generate_button.click(
fn=generate_gif,
inputs=[prompt, image, negative_prompt, num_inference_steps, guidance_scale, seed],
outputs=output_video
)
# Launch the interface
demo.launch()