File size: 9,973 Bytes
2999286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#!/usr/bin/env python
# coding: utf-8

# # Spatial transition tensor of single cells
# 
# spatial transition tensor (STT), a method that uses messenger RNA splicing and spatial transcriptomes through a multiscale dynamical model to characterize multistability in space. By learning a four-dimensional transition tensor and spatial-constrained random walk, STT reconstructs cell-state-specific dynamics and spatial state transitions via both short-time local tensor streamlines between cells and long-time transition paths among attractors.
# 
# We made three improvements in integrating the STT algorithm in OmicVerse:
# 
# - **More user-friendly function implementation**: we refreshed the unnecessary extra assignments in the original documentation and automated their encapsulation into the `omicverse.space.STT` class.
# - **Removed version dependencies**: We removed all the strong dependencies such as ``CellRank==1.3.1`` in the original `requierment.txt`, so that users only need to install the OmicVerse package and the latest version of CellRank to make it work perfectly.
# - **Added clearer function notes**: We have reorganised the unclear areas described in the original tutorial, where you need to go back to the paper to read, in this document.
# 
# If you found this tutorial helpful, please cite STT and OmicVerse: 
# 
# - Zhou, P., Bocci, F., Li, T. et al. Spatial transition tensor of single cells. Nat Methods (2024). https://doi.org/10.1038/s41592-024-02266-x

# In[1]:


import omicverse as ov
#import omicverse.STT as st
import scvelo as scv
import scanpy as sc
ov.plot_set()


# ## Preprocess data
# 
# In this tutorial, we focus on demonstrating and reproducing the original author's data, which has been completed with calculations such as `adata.layers[‘Ms’]`, `adata.layers[‘Mu’]`, and so on. And when analysing our own data, we need the following functions to preprocess the raw data
# 
# ```
# scv.pp.filter_and_normalise(adata, min_shared_counts=20, n_top_genes=3000)
# scv.pp.moments(adata, n_pcs=30, n_neighbors=30)
# ```
# 
# The `mouse_brain.h5ad` could be found in the [Github:STT](https://github.com/cliffzhou92/STT/tree/release/data)

# In[2]:


adata = sc.read_h5ad('mouse_brain.h5ad')
adata


# ## Training STT model
# 
# Here, we used ov.space.STT to construct a STAGATE object to train the model. We need to set the following parameters during initialisation:
# 
# - `spatial_loc`: The nulling coordinates for each spot, in 10x genomic data, are typically `adata.obsm[‘spatial’]`, so this parameter is typically set to `spatial`, but here we store it in `xy_loc`.
# - `region`: This parameter is considered to be the region of the attractor, which we would normally define using spatial annotations or cellular annotation information.

# In[3]:


STT_obj=ov.space.STT(adata,spatial_loc='xy_loc',region='Region')


# Note that we need to specify the number of potential attractors first when predicting attractors. In the author's original tutorial and original paper, there is no clear definition for the specification of this parameter. After referring to the author's tutorial, we use the calculated number of leiden of `adata_aggr` as a prediction of the number of potential attractors.

# In[4]:


STT_obj.stage_estimate()


# The authors noted in the original tutorial that a key parameter called ‘spa_weight’ controls the relative weight of the spatial location similarity kernel.
# 
# Other parameters are further described in the api documentation. Typically `n_stage` is the parameter we are interested in modifying

# In[ ]:


STT_obj.train(n_states = 9, n_iter = 15, weight_connectivities = 0.5, 
            n_neighbors = 50,thresh_ms_gene = 0.2, spa_weight =0.3)


# After the prediction is complete, the attractor is stored in `adata.obs[‘attractor’]`. We can use `ov.pl.embedding` to visualize it.

# In[12]:


ov.pl.embedding(adata, basis="xy_loc", 
                color=["attractor"],frameon='small',
               palette=ov.pl.sc_color[11:])


# In[7]:


ov.pl.embedding(adata, basis="xy_loc", 
                color=["Region"],frameon='small',
               )


# ## Pathway analysis
# 
# In the original tutorial, the author encapsulated the `gseapy==1.0.4` version for access enrichment. Note that the use of this function requires networking, which we have modified so that we can enrich using the local pathway dataset
# 
# We can download good access data directly in [enrichr](https://maayanlab.cloud/Enrichr/#libraries), such as the `KEGG_2019_mouse` used in this study.
# 
# https://maayanlab.cloud/Enrichr/geneSetLibrary?mode=text&libraryName=KEGG_2019_Mouse

# In[8]:


pathway_dict=ov.utils.geneset_prepare('genesets/KEGG_2019_Mouse.txt',organism='Mouse')


# In[ ]:


STT_obj.compute_pathway(pathway_dict)


# After running the function, we can use the `plot_pathway` function to visualize the similairty between pathway dynamics in the low dimensional embeddings.

# In[11]:


fig = STT_obj.plot_pathway(figsize = (10,8),size = 100,fontsize = 12)
for ax in fig.axes:
    ax.set_xlabel('Embedding 1', fontsize=20)  # Adjust font size as needed
    ax.set_ylabel('Embedding 2', fontsize=20)  # Adjust font size as needed
fig.show()


# If we are interested in the specific pathways, we can use the `plot_tensor_pathway` function to visualize the streamlines.

# In[13]:


import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1, figsize=(4, 4))
STT_obj.plot_tensor_pathway(pathway_name = 'Wnt signaling pathway',basis = 'xy_loc',
                           ax=ax)


# In[14]:


fig, ax = plt.subplots(1, 1, figsize=(4, 4))
STT_obj.plot_tensor_pathway( 'TGF-beta signaling pathway',basis = 'xy_loc',
                           ax=ax)


# ## Tensor analysis
# 
# In the author's original paper, a very interesting concept is mentioned, attractor-averaged and attractor-specific tensors.
# 
# We can analyse the Joint Tensor and thus study the steady state processes of different attractors. If the streamlines are passing through the attractor then the attractor is in a steady state, if the streamlines are emanating/converging from the attractor then the attractor is in a dynamic state.
# 
# In addition to this, the Unspliced Tensor also reflects the strength as well as the size of the attraction.

# In[4]:


STT_obj.plot_tensor(list_attractor = [1,3,5,6],
                filter_cells = True, member_thresh = 0.1, density = 1)


# ## Landscape analysis
# 
# Each attractor corresponds to a spatial steady state, then we can use contour plots to visualise this steady state and use CellRank's correlation function to infer state transitions between different attractors.

# In[17]:


STT_obj.construct_landscape(coord_key = 'X_xy_loc')


# In[14]:


sc.pl.embedding(adata, color = ['attractor', 'Region'],basis= 'trans_coord')


# Method to infer the lineage, either ‘MPFT’(maxium probability flow tree, global) or ‘MPPT’(most probable path tree, local)

# In[15]:


STT_obj.infer_lineage(si=3,sf=4, method = 'MPPT',flux_fraction=0.8,color_palette_name = 'tab10',size_point = 8,
                   size_text=12)


# The Sankey plot displaying the relation between STT attractors (left) and spatial region annotations (right). The width of links indicates the number of cells that share the connected attractor label and region annotation label simultaneously

# In[16]:


fig = STT_obj.plot_sankey(adata.obs['attractor'].tolist(),adata.obs['Region'].tolist())


# ## Saving and Loading Data
# 
# We need to save the data after the calculation is complete, and we provide the load function to load it directly in the next analysis without having to re-analyse it.

# In[24]:


#del adata.uns['r2_keep_train']
#del adata.uns['r2_keep_test']
#del adata.uns['kernel']
#del adata.uns['kernel_connectivities']

STT_obj.adata.write('data/mouse_brain_adata.h5ad')
STT_obj.adata_aggr.write('data/mouse_brain_adata_aggr.h5ad')


# In[2]:


adata=ov.read('data/mouse_brain_adata.h5ad')
adata_aggr=ov.read('data/mouse_brain_adata_aggr.h5ad')


# In[3]:


STT_obj=ov.space.STT(adata,spatial_loc='xy_loc',region='Region')
STT_obj.load(adata,adata_aggr)


# ## Gene Dynamic
# 
# The genes with high multistability scores possess varying expression levels in both unspliced and spliced counts within various attractors, and show a gradual change during stage transitions. These gene were stored in `adata.var['r2_test']`
# 
# 

# In[18]:


adata.var['r2_test'].sort_values(ascending=False)


# In[11]:


STT_obj.plot_top_genes(top_genes = 6, ncols = 2, figsize = (8,8),)


# We analysed the attractor 1-related gene Sim1, and we found that in the unspliced Mu matrix (smooth unspliced), Sim1 is expressed low at attractor 1; in the spliced matrix Ms, Sim1 is expressed high at attractor 1. It indicates that there is a dynamic tendency of Sim1 gene at attractor 1, i.e., the direction of Sim1 expression is flowing towards attractor 1.
# 
# Velo analyses can also illustrate this, although Sim1 expression is not highest at attractor 1.

# In[26]:


import matplotlib.pyplot as plt
fig, axes = plt.subplots(1, 4, figsize=(12, 3))
ov.pl.embedding(adata, basis="xy_loc", 
                color=["Sim1"],frameon='small',
                title='Sim1:Ms',show=False,
                layer='Ms',cmap='RdBu_r',ax=axes[0]
               )
ov.pl.embedding(adata, basis="xy_loc", 
                color=["Sim1"],frameon='small',
                title='Sim1:Mu',show=False,
                layer='Mu',cmap='RdBu_r',ax=axes[1]
               )
ov.pl.embedding(adata, basis="xy_loc", 
                color=["Sim1"],frameon='small',
                title='Sim1:Velo',show=False,
                layer='velo',cmap='RdBu_r',ax=axes[2]
               )
ov.pl.embedding(adata, basis="xy_loc", 
                color=["Sim1"],frameon='small',
                title='Sim1:exp',show=False,
                #layer='Mu',
                cmap='RdBu_r',ax=axes[3]
               )
plt.tight_layout()