Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
import os
|
3 |
|
4 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
|
5 |
from youtube_transcript_api import YouTubeTranscriptApi
|
@@ -16,16 +16,25 @@ from langchain.prompts.chat import (
|
|
16 |
|
17 |
def get_transcript(video_url):
|
18 |
try:
|
19 |
-
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
transcript = YouTubeTranscriptApi.get_transcript(video_id)
|
|
|
|
|
22 |
text = "\n".join([t["text"] for t in transcript])
|
23 |
-
|
24 |
-
return text # Return transcript as string
|
25 |
|
26 |
except Exception as e:
|
27 |
return f"Error fetching transcript: {str(e)}"
|
28 |
|
|
|
29 |
|
30 |
def create_db_from_video_url(video_url, api_key):
|
31 |
"""
|
@@ -36,12 +45,12 @@ def create_db_from_video_url(video_url, api_key):
|
|
36 |
transcripts = get_transcript(video_url)
|
37 |
|
38 |
# Convert transcript string into a Document
|
39 |
-
|
40 |
|
41 |
-
print(
|
42 |
# cannot provide this directly to the model so we are splitting the transcripts into small chunks
|
43 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
44 |
-
docs = text_splitter.split_documents(
|
45 |
print(docs)
|
46 |
|
47 |
db = FAISS.from_documents(docs, embedding=embeddings)
|
|
|
1 |
import gradio as gr
|
2 |
+
import os, re
|
3 |
|
4 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
|
5 |
from youtube_transcript_api import YouTubeTranscriptApi
|
|
|
16 |
|
17 |
def get_transcript(video_url):
|
18 |
try:
|
19 |
+
# Use a regular expression to extract video ID from the YouTube URL
|
20 |
+
video_id_match = re.search(r"(?:https?://)?(?:www\.)?(?:youtube\.com\/(?:[^\/\n\s]+\/\S+\/|(?:v|e(?:mbed)?)\/|\S*?[?&]v=)|youtu\.be\/)([a-zA-Z0-9_-]{11})", video_url)
|
21 |
|
22 |
+
if not video_id_match:
|
23 |
+
return "Invalid YouTube URL"
|
24 |
+
|
25 |
+
video_id = video_id_match.group(1)
|
26 |
+
|
27 |
+
# Fetch the transcript
|
28 |
transcript = YouTubeTranscriptApi.get_transcript(video_id)
|
29 |
+
|
30 |
+
# Join the transcript text into a single string
|
31 |
text = "\n".join([t["text"] for t in transcript])
|
32 |
+
return text # Return the transcript as a string
|
|
|
33 |
|
34 |
except Exception as e:
|
35 |
return f"Error fetching transcript: {str(e)}"
|
36 |
|
37 |
+
|
38 |
|
39 |
def create_db_from_video_url(video_url, api_key):
|
40 |
"""
|
|
|
45 |
transcripts = get_transcript(video_url)
|
46 |
|
47 |
# Convert transcript string into a Document
|
48 |
+
doc_convert = Document(page_content=transcripts)
|
49 |
|
50 |
+
print(doc_convert)
|
51 |
# cannot provide this directly to the model so we are splitting the transcripts into small chunks
|
52 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
53 |
+
docs = text_splitter.split_documents([doc_convert])
|
54 |
print(docs)
|
55 |
|
56 |
db = FAISS.from_documents(docs, embedding=embeddings)
|