File size: 20,720 Bytes
58fbdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
import argparse
import glob
import json
import logging
import os
import re
import subprocess
import sys
import traceback
from multiprocessing import cpu_count

import faiss
import librosa
import numpy as np
import torch
from scipy.io.wavfile import read
from sklearn.cluster import MiniBatchKMeans
from torch.nn import functional as F

MATPLOTLIB_FLAG = False

logging.basicConfig(stream=sys.stdout, level=logging.WARN)
logger = logging

f0_bin = 256
f0_max = 1100.0
f0_min = 50.0
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)

def normalize_f0(f0, x_mask, uv, random_scale=True):
    # calculate means based on x_mask
    uv_sum = torch.sum(uv, dim=1, keepdim=True)
    uv_sum[uv_sum == 0] = 9999
    means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum

    if random_scale:
        factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
    else:
        factor = torch.ones(f0.shape[0], 1).to(f0.device)
    # normalize f0 based on means and factor
    f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
    if torch.isnan(f0_norm).any():
        exit(0)
    return f0_norm * x_mask
def plot_data_to_numpy(x, y):
    global MATPLOTLIB_FLAG
    if not MATPLOTLIB_FLAG:
        import matplotlib
        matplotlib.use("Agg")
        MATPLOTLIB_FLAG = True
        mpl_logger = logging.getLogger('matplotlib')
        mpl_logger.setLevel(logging.WARNING)
    import matplotlib.pylab as plt
    import numpy as np

    fig, ax = plt.subplots(figsize=(10, 2))
    plt.plot(x)
    plt.plot(y)
    plt.tight_layout()

    fig.canvas.draw()
    data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close()
    return data


def f0_to_coarse(f0):
  f0_mel = 1127 * (1 + f0 / 700).log()
  a = (f0_bin - 2) / (f0_mel_max - f0_mel_min)
  b = f0_mel_min * a - 1.
  f0_mel = torch.where(f0_mel > 0, f0_mel * a - b, f0_mel)
  # torch.clip_(f0_mel, min=1., max=float(f0_bin - 1))
  f0_coarse = torch.round(f0_mel).long()
  f0_coarse = f0_coarse * (f0_coarse > 0)
  f0_coarse = f0_coarse + ((f0_coarse < 1) * 1)
  f0_coarse = f0_coarse * (f0_coarse < f0_bin)
  f0_coarse = f0_coarse + ((f0_coarse >= f0_bin) * (f0_bin - 1))
  return f0_coarse

def get_content(cmodel, y):
    with torch.no_grad():
        c = cmodel.extract_features(y.squeeze(1))[0]
    c = c.transpose(1, 2)
    return c

def get_f0_predictor(f0_predictor,hop_length,sampling_rate,**kargs):
    if f0_predictor == "pm":
        from modules.F0Predictor.PMF0Predictor import PMF0Predictor
        f0_predictor_object = PMF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
    elif f0_predictor == "crepe":
        from modules.F0Predictor.CrepeF0Predictor import CrepeF0Predictor
        f0_predictor_object = CrepeF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,device=kargs["device"],threshold=kargs["threshold"])
    elif f0_predictor == "harvest":
        from modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor
        f0_predictor_object = HarvestF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
    elif f0_predictor == "dio":
        from modules.F0Predictor.DioF0Predictor import DioF0Predictor
        f0_predictor_object = DioF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate) 
    elif f0_predictor == "rmvpe":
        from modules.F0Predictor.RMVPEF0Predictor import RMVPEF0Predictor
        f0_predictor_object = RMVPEF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,dtype=torch.float32 ,device=kargs["device"],threshold=kargs["threshold"])
    elif f0_predictor == "fcpe":
        from modules.F0Predictor.FCPEF0Predictor import FCPEF0Predictor
        f0_predictor_object = FCPEF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,dtype=torch.float32 ,device=kargs["device"],threshold=kargs["threshold"])
    else:
        raise Exception("Unknown f0 predictor")
    return f0_predictor_object

def get_speech_encoder(speech_encoder,device=None,**kargs):
    if speech_encoder == "vec768l12":
        from vencoder.ContentVec768L12 import ContentVec768L12
        speech_encoder_object = ContentVec768L12(device = device)
    elif speech_encoder == "vec256l9":
        from vencoder.ContentVec256L9 import ContentVec256L9
        speech_encoder_object = ContentVec256L9(device = device)
    elif speech_encoder == "vec256l9-onnx":
        from vencoder.ContentVec256L9_Onnx import ContentVec256L9_Onnx
        speech_encoder_object = ContentVec256L9_Onnx(device = device)
    elif speech_encoder == "vec256l12-onnx":
        from vencoder.ContentVec256L12_Onnx import ContentVec256L12_Onnx
        speech_encoder_object = ContentVec256L12_Onnx(device = device)
    elif speech_encoder == "vec768l9-onnx":
        from vencoder.ContentVec768L9_Onnx import ContentVec768L9_Onnx
        speech_encoder_object = ContentVec768L9_Onnx(device = device)
    elif speech_encoder == "vec768l12-onnx":
        from vencoder.ContentVec768L12_Onnx import ContentVec768L12_Onnx
        speech_encoder_object = ContentVec768L12_Onnx(device = device)
    elif speech_encoder == "hubertsoft-onnx":
        from vencoder.HubertSoft_Onnx import HubertSoft_Onnx
        speech_encoder_object = HubertSoft_Onnx(device = device)
    elif speech_encoder == "hubertsoft":
        from vencoder.HubertSoft import HubertSoft
        speech_encoder_object = HubertSoft(device = device)
    elif speech_encoder == "whisper-ppg":
        from vencoder.WhisperPPG import WhisperPPG
        speech_encoder_object = WhisperPPG(device = device)
    elif speech_encoder == "cnhubertlarge":
        from vencoder.CNHubertLarge import CNHubertLarge
        speech_encoder_object = CNHubertLarge(device = device)
    elif speech_encoder == "dphubert":
        from vencoder.DPHubert import DPHubert
        speech_encoder_object = DPHubert(device = device)
    elif speech_encoder == "whisper-ppg-large":
        from vencoder.WhisperPPGLarge import WhisperPPGLarge
        speech_encoder_object = WhisperPPGLarge(device = device)
    elif speech_encoder == "wavlmbase+":
        from vencoder.WavLMBasePlus import WavLMBasePlus
        speech_encoder_object = WavLMBasePlus(device = device)
    else:
        raise Exception("Unknown speech encoder")
    return speech_encoder_object 

def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
    assert os.path.isfile(checkpoint_path)
    checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
    iteration = checkpoint_dict['iteration']
    learning_rate = checkpoint_dict['learning_rate']
    if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
        optimizer.load_state_dict(checkpoint_dict['optimizer'])
    saved_state_dict = checkpoint_dict['model']
    model = model.to(list(saved_state_dict.values())[0].dtype)
    if hasattr(model, 'module'):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    new_state_dict = {}
    for k, v in state_dict.items():
        try:
            # assert "dec" in k or "disc" in k
            # print("load", k)
            new_state_dict[k] = saved_state_dict[k]
            assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
        except Exception:
            if "enc_q" not in k or "emb_g" not in k:
              print("%s is not in the checkpoint,please check your checkpoint.If you're using pretrain model,just ignore this warning." % k)
              logger.info("%s is not in the checkpoint" % k)
              new_state_dict[k] = v
    if hasattr(model, 'module'):
        model.module.load_state_dict(new_state_dict)
    else:
        model.load_state_dict(new_state_dict)
    print("load ")
    logger.info("Loaded checkpoint '{}' (iteration {})".format(
        checkpoint_path, iteration))
    return model, optimizer, learning_rate, iteration


def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
  logger.info("Saving model and optimizer state at iteration {} to {}".format(
    iteration, checkpoint_path))
  if hasattr(model, 'module'):
    state_dict = model.module.state_dict()
  else:
    state_dict = model.state_dict()
  torch.save({'model': state_dict,
              'iteration': iteration,
              'optimizer': optimizer.state_dict(),
              'learning_rate': learning_rate}, checkpoint_path)

def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
  """Freeing up space by deleting saved ckpts

  Arguments:
  path_to_models    --  Path to the model directory
  n_ckpts_to_keep   --  Number of ckpts to keep, excluding G_0.pth and D_0.pth
  sort_by_time      --  True -> chronologically delete ckpts
                        False -> lexicographically delete ckpts
  """
  ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
  def name_key(_f):
      return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
  def time_key(_f):
      return os.path.getmtime(os.path.join(path_to_models, _f))
  sort_key = time_key if sort_by_time else name_key
  def x_sorted(_x):
      return sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")], key=sort_key)
  to_del = [os.path.join(path_to_models, fn) for fn in
            (x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
  def del_info(fn):
      return logger.info(f".. Free up space by deleting ckpt {fn}")
  def del_routine(x):
      return [os.remove(x), del_info(x)]
  [del_routine(fn) for fn in to_del]

def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
  for k, v in scalars.items():
    writer.add_scalar(k, v, global_step)
  for k, v in histograms.items():
    writer.add_histogram(k, v, global_step)
  for k, v in images.items():
    writer.add_image(k, v, global_step, dataformats='HWC')
  for k, v in audios.items():
    writer.add_audio(k, v, global_step, audio_sampling_rate)


def latest_checkpoint_path(dir_path, regex="G_*.pth"):
  f_list = glob.glob(os.path.join(dir_path, regex))
  f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
  x = f_list[-1]
  print(x)
  return x


def plot_spectrogram_to_numpy(spectrogram):
  global MATPLOTLIB_FLAG
  if not MATPLOTLIB_FLAG:
    import matplotlib
    matplotlib.use("Agg")
    MATPLOTLIB_FLAG = True
    mpl_logger = logging.getLogger('matplotlib')
    mpl_logger.setLevel(logging.WARNING)
  import matplotlib.pylab as plt
  import numpy as np

  fig, ax = plt.subplots(figsize=(10,2))
  im = ax.imshow(spectrogram, aspect="auto", origin="lower",
                  interpolation='none')
  plt.colorbar(im, ax=ax)
  plt.xlabel("Frames")
  plt.ylabel("Channels")
  plt.tight_layout()

  fig.canvas.draw()
  data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
  data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
  plt.close()
  return data


def plot_alignment_to_numpy(alignment, info=None):
  global MATPLOTLIB_FLAG
  if not MATPLOTLIB_FLAG:
    import matplotlib
    matplotlib.use("Agg")
    MATPLOTLIB_FLAG = True
    mpl_logger = logging.getLogger('matplotlib')
    mpl_logger.setLevel(logging.WARNING)
  import matplotlib.pylab as plt
  import numpy as np

  fig, ax = plt.subplots(figsize=(6, 4))
  im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
                  interpolation='none')
  fig.colorbar(im, ax=ax)
  xlabel = 'Decoder timestep'
  if info is not None:
      xlabel += '\n\n' + info
  plt.xlabel(xlabel)
  plt.ylabel('Encoder timestep')
  plt.tight_layout()

  fig.canvas.draw()
  data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
  data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
  plt.close()
  return data


def load_wav_to_torch(full_path):
  sampling_rate, data = read(full_path)
  return torch.FloatTensor(data.astype(np.float32)), sampling_rate


def load_filepaths_and_text(filename, split="|"):
  with open(filename, encoding='utf-8') as f:
    filepaths_and_text = [line.strip().split(split) for line in f]
  return filepaths_and_text


def get_hparams(init=True):
  parser = argparse.ArgumentParser()
  parser.add_argument('-c', '--config', type=str, default="./configs/config.json",
                      help='JSON file for configuration')
  parser.add_argument('-m', '--model', type=str, required=True,
                      help='Model name')

  args = parser.parse_args()
  model_dir = os.path.join("./logs", args.model)

  if not os.path.exists(model_dir):
    os.makedirs(model_dir)

  config_path = args.config
  config_save_path = os.path.join(model_dir, "config.json")
  if init:
    with open(config_path, "r") as f:
      data = f.read()
    with open(config_save_path, "w") as f:
      f.write(data)
  else:
    with open(config_save_path, "r") as f:
      data = f.read()
  config = json.loads(data)

  hparams = HParams(**config)
  hparams.model_dir = model_dir
  return hparams


def get_hparams_from_dir(model_dir):
  config_save_path = os.path.join(model_dir, "config.json")
  with open(config_save_path, "r") as f:
    data = f.read()
  config = json.loads(data)

  hparams =HParams(**config)
  hparams.model_dir = model_dir
  return hparams


def get_hparams_from_file(config_path, infer_mode = False):
  with open(config_path, "r") as f:
    data = f.read()
  config = json.loads(data)
  hparams =HParams(**config) if not infer_mode else InferHParams(**config)
  return hparams


def check_git_hash(model_dir):
  source_dir = os.path.dirname(os.path.realpath(__file__))
  if not os.path.exists(os.path.join(source_dir, ".git")):
    logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
      source_dir
    ))
    return

  cur_hash = subprocess.getoutput("git rev-parse HEAD")

  path = os.path.join(model_dir, "githash")
  if os.path.exists(path):
    saved_hash = open(path).read()
    if saved_hash != cur_hash:
      logger.warn("git hash values are different. {}(saved) != {}(current)".format(
        saved_hash[:8], cur_hash[:8]))
  else:
    open(path, "w").write(cur_hash)


def get_logger(model_dir, filename="train.log"):
  global logger
  logger = logging.getLogger(os.path.basename(model_dir))
  logger.setLevel(logging.DEBUG)

  formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
  if not os.path.exists(model_dir):
    os.makedirs(model_dir)
  h = logging.FileHandler(os.path.join(model_dir, filename))
  h.setLevel(logging.DEBUG)
  h.setFormatter(formatter)
  logger.addHandler(h)
  return logger


def repeat_expand_2d(content, target_len, mode = 'left'):
    # content : [h, t]
    return repeat_expand_2d_left(content, target_len) if mode == 'left' else repeat_expand_2d_other(content, target_len, mode)



def repeat_expand_2d_left(content, target_len):
    # content : [h, t]

    src_len = content.shape[-1]
    target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
    temp = torch.arange(src_len+1) * target_len / src_len
    current_pos = 0
    for i in range(target_len):
        if i < temp[current_pos+1]:
            target[:, i] = content[:, current_pos]
        else:
            current_pos += 1
            target[:, i] = content[:, current_pos]

    return target


# mode : 'nearest'| 'linear'| 'bilinear'| 'bicubic'| 'trilinear'| 'area'
def repeat_expand_2d_other(content, target_len, mode = 'nearest'):
    # content : [h, t]
    content = content[None,:,:]
    target = F.interpolate(content,size=target_len,mode=mode)[0]
    return target


def mix_model(model_paths,mix_rate,mode):
  mix_rate = torch.FloatTensor(mix_rate)/100
  model_tem = torch.load(model_paths[0])
  models = [torch.load(path)["model"] for path in model_paths]
  if mode == 0:
     mix_rate = F.softmax(mix_rate,dim=0)
  for k in model_tem["model"].keys():
     model_tem["model"][k] = torch.zeros_like(model_tem["model"][k])
     for i,model in enumerate(models):
        model_tem["model"][k] += model[k]*mix_rate[i]
  torch.save(model_tem,os.path.join(os.path.curdir,"output.pth"))
  return os.path.join(os.path.curdir,"output.pth")
  
def change_rms(data1, sr1, data2, sr2, rate):  # 1是输入音频,2是输出音频,rate是2的占比 from RVC
    # print(data1.max(),data2.max())
    rms1 = librosa.feature.rms(
        y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
    )  # 每半秒一个点
    rms2 = librosa.feature.rms(y=data2.detach().cpu().numpy(), frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
    rms1 = torch.from_numpy(rms1).to(data2.device)
    rms1 = F.interpolate(
        rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
    ).squeeze()
    rms2 = torch.from_numpy(rms2).to(data2.device)
    rms2 = F.interpolate(
        rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
    ).squeeze()
    rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
    data2 *= (
        torch.pow(rms1, torch.tensor(1 - rate))
        * torch.pow(rms2, torch.tensor(rate - 1))
    )
    return data2

def train_index(spk_name,root_dir = "dataset/44k/"):  #from: RVC https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI
    n_cpu = cpu_count()
    print("The feature index is constructing.")
    exp_dir = os.path.join(root_dir,spk_name)
    listdir_res = []
    for file in os.listdir(exp_dir):
       if ".wav.soft.pt" in file:
          listdir_res.append(os.path.join(exp_dir,file))
    if len(listdir_res) == 0:
        raise Exception("You need to run preprocess_hubert_f0.py!")
    npys = []
    for name in sorted(listdir_res):
        phone = torch.load(name)[0].transpose(-1,-2).numpy()
        npys.append(phone)
    big_npy = np.concatenate(npys, 0)
    big_npy_idx = np.arange(big_npy.shape[0])
    np.random.shuffle(big_npy_idx)
    big_npy = big_npy[big_npy_idx]
    if big_npy.shape[0] > 2e5:
        # if(1):
        info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]
        print(info)
        try:
            big_npy = (
                MiniBatchKMeans(
                    n_clusters=10000,
                    verbose=True,
                    batch_size=256 * n_cpu,
                    compute_labels=False,
                    init="random",
                )
                .fit(big_npy)
                .cluster_centers_
            )
        except Exception:
            info = traceback.format_exc()
            print(info)
    n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
    index = faiss.index_factory(big_npy.shape[1] , "IVF%s,Flat" % n_ivf)
    index_ivf = faiss.extract_index_ivf(index)  #
    index_ivf.nprobe = 1
    index.train(big_npy)
    batch_size_add = 8192
    for i in range(0, big_npy.shape[0], batch_size_add):
        index.add(big_npy[i : i + batch_size_add])
    # faiss.write_index(
    #     index,
    #     f"added_{spk_name}.index"
    # )
    print("Successfully build index")
    return index


class HParams():
  def __init__(self, **kwargs):
    for k, v in kwargs.items():
      if type(v) == dict:
        v = HParams(**v)
      self[k] = v

  def keys(self):
    return self.__dict__.keys()

  def items(self):
    return self.__dict__.items()

  def values(self):
    return self.__dict__.values()

  def __len__(self):
    return len(self.__dict__)

  def __getitem__(self, key):
    return getattr(self, key)

  def __setitem__(self, key, value):
    return setattr(self, key, value)

  def __contains__(self, key):
    return key in self.__dict__

  def __repr__(self):
    return self.__dict__.__repr__()

  def get(self,index):
    return self.__dict__.get(index)

  
class InferHParams(HParams):
  def __init__(self, **kwargs):
    for k, v in kwargs.items():
      if type(v) == dict:
        v = InferHParams(**v)
      self[k] = v

  def __getattr__(self,index):
    return self.get(index)


class Volume_Extractor:
    def __init__(self, hop_size = 512):
        self.hop_size = hop_size
        
    def extract(self, audio): # audio: 2d tensor array
        if not isinstance(audio,torch.Tensor):
           audio = torch.Tensor(audio)
        n_frames = int(audio.size(-1) // self.hop_size)
        audio2 = audio ** 2
        audio2 = torch.nn.functional.pad(audio2, (int(self.hop_size // 2), int((self.hop_size + 1) // 2)), mode = 'reflect')
        volume = torch.nn.functional.unfold(audio2[:,None,None,:],(1,self.hop_size),stride=self.hop_size)[:,:,:n_frames].mean(dim=1)[0]
        volume = torch.sqrt(volume)
        return volume