Spaces:
Sleeping
Sleeping
Last commit not found
import torch | |
import torchvision.transforms as T | |
import torch.nn.functional as F | |
from torchvision import models | |
import torch.nn as nn | |
import numpy as np | |
from PIL import Image | |
from fastapi import FastAPI, UploadFile, File | |
from fastapi.responses import JSONResponse | |
import uvicorn | |
from fastapi.middleware.cors import CORSMiddleware | |
device = torch.device('cpu') | |
model = models.vgg16() | |
model.classifier[6] = nn.Linear(4096, 2) | |
model.load_state_dict(torch.load('model_vgg16.pth' , map_location=device)) | |
model.eval() | |
transform = T.Compose([ | |
T.Resize((224, 224)), | |
T.ToTensor(), | |
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225),) | |
]) | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
def background2white(image) : | |
arr = np.asarray(image) | |
if arr.ndim == 3 and arr.shape[-1]==4 : | |
white_background = Image.new("RGB", image.size, (255, 255, 255)) | |
white_background.paste(image, (0, 0), image) | |
return white_background | |
else : | |
return image | |
async def predict(file: UploadFile = File(...)): | |
image = Image.open(file.file) | |
image = background2white(image).convert("RGB") | |
# image.save('web/backend/input.jpg') | |
print(image.size) | |
print() | |
image = transform(image) | |
image = image.unsqueeze(0) | |
print(image.size) | |
with torch.no_grad(): | |
output = model(image) | |
print(output) | |
_, predicted = torch.max(output, 1) | |
predicted_class = predicted.item() | |
probabilities = F.softmax(output[0] , dim=0) | |
probabilities = probabilities.tolist() | |
print(probabilities) | |
return JSONResponse([predicted_class , probabilities[0] , probabilities[1] , output.tolist()]) | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=8000) |