russellotniel's picture
Updated main.py file and added page_utils.py file to store color schema
ac08f0e
raw
history blame
8.03 kB
from pathlib import Path
from typing import List
import cv2
import gradio as gr
import numpy as np
import torch
from PIL import Image
from models import phc_models
from utils import utils, page_utils
device = torch.device('cpu')
if torch.cuda.is_available():
device = torch.device('cuda:0')
BILATERIAL_WEIGHT = 'weights/phresnet18_cbis2views.pt'
BILATERAL_MODEL = phc_models.PHCResNet18(
channels=2, n=2, num_classes=1, visualize=True)
BILATERAL_MODEL.add_top_blocks(num_classes=1)
BILATERAL_MODEL.load_state_dict(torch.load(
BILATERIAL_WEIGHT, map_location='cpu'))
BILATERAL_MODEL = BILATERAL_MODEL.to(device)
BILATERAL_MODEL.eval()
INPUT_HEIGHT, INPUT_WIDTH = 600, 500
SUPPORTED_IMG_EXT = ['.png', '.jpg', '.jpeg']
EXAMPLE_IMAGES = [
['examples/f4b2d377f43ba0bd_left_cc.png',
'examples/f4b2d377f43ba0bd_left_mlo.jpg'],
['examples/f4b2d377f43ba0bd_right_cc.png',
'examples/f4b2d377f43ba0bd_right_mlo.jpeg'],
['examples/P_00001_LEFT_cc.jpg', 'examples/P_00001_LEFT_mlo.jpeg'],
]
# Model warmup
test_images = np.random.randint(0, 255, (2, INPUT_HEIGHT, INPUT_WIDTH))
test_images = torch.from_numpy(test_images).to(device)
test_images = test_images.unsqueeze(0) # Add batch dimension
for _ in range(10):
_, _, _ = BILATERAL_MODEL(test_images)
test_images = None
def filter_files(files: List) -> List:
"""Filter uploaded files.
The model requires a pair of CC-MLO view of the breast scan.
This function will filter and ensure the inputs are as expected.
FIlter:
- Not enough number of files
- Unsupported extensions
- Missing required pair or part
Parameters
----------
files : List[tempfile._TemporaryFileWrapper]
List of path to downloaded files
Returns
-------
List[pathlib.Path]
List of path to downloaded files
Raises
------
gr.Error
If the files is not equal to 2,
gr.Error
If the extension is unsupported
gr.Error
If specific view or side of mammography is missing.
"""
if len(files) != 2:
raise gr.Error(
f'Need exactly 2 images. Currently have {len(files)} images!')
file_paths = [Path(file.name) for file in files]
if not all([path.suffix in SUPPORTED_IMG_EXT for path in file_paths]):
raise gr.Error(f'There is a file with unsupported type. \
Make sure all files are in {SUPPORTED_IMG_EXT}!')
# Table to store view(row), side(column)
table = np.zeros((2, 2), dtype=bool)
bin_left = 0
bin_right = 0
cc_first = False
for idx, file in enumerate(file_paths):
splits = file.name.split('_')
# Check if view is present
if any(['cc' in part.lower() for part in splits]):
table[0, :] = [True, True]
if idx == 0:
cc_first = True
if any(['mlo' in part.lower() for part in splits]):
table[1, :] = [True, True]
# Check if side is present
if any(['left' in part.lower() for part in splits]):
table[:, 0] &= True
bin_left += 1
elif any(['right' in part.lower() for part in splits]):
table[:, 1] &= True
bin_right += 1
# Ensure cc_first
if not cc_first:
file_paths.reverse()
# Reset side that has not enough files
if bin_left < 2:
table[:, 0] &= False
if bin_right < 2:
table[:, 1] &= False
if not any([all(table[:, 0]), all(table[:, 1])]):
raise gr.Error('Missing bilateral-view pair for Left or Right side.')
return file_paths
def predict_bilateral(cc_file, mlo_file):
"""Predict Bilateral Mammography.
Parameters
----------
files : List[tempfile._TemporaryFileWrapper]
TemporaryFile object for the uploaded file
Returns
-------
List[List, Dict]
List of objects that will be used to display the result
"""
filtered_files = filter_files([cc_file, mlo_file])
displays_imgs = []
images = []
for path in filtered_files:
image = np.array(Image.open(str(path)))
image = cv2.normalize(
image, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
image = cv2.resize(
image, (INPUT_WIDTH, INPUT_HEIGHT), interpolation=cv2.INTER_LINEAR)
images.append(image)
images = np.asarray(images).astype(np.float32)
im_h, im_w = images[0].shape[:2]
images_t = torch.from_numpy(images)
images_t = images_t.unsqueeze(0) # Add batch dimension
images_t = images_t.to(device)
out, _, out_refiner = BILATERAL_MODEL(images_t)
out_refiner = utils.mean_activations(out_refiner).numpy()
probability = torch.sigmoid(out).detach().cpu().item()
label_name = 'Malignant' if probability > 0.5 else 'Normal/Benign'
lebels_dict = {label_name: probability}
refined_view_norm = cv2.normalize(
out_refiner, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
refined_view = cv2.applyColorMap(refined_view_norm, cv2.COLORMAP_JET)
refined_view = cv2.resize(
refined_view, (im_w, im_h), interpolation=cv2.INTER_LINEAR)
image0_colored = cv2.normalize(
images[0], None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
image0_colored = cv2.cvtColor(image0_colored, cv2.COLOR_GRAY2RGB)
image1_colored = cv2.normalize(
images[1], None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
image1_colored = cv2.cvtColor(image1_colored, cv2.COLOR_GRAY2RGB)
heatmap0_overlay = cv2.addWeighted(
image0_colored, 1.0, refined_view, 0.5, 0)
heatmap1_overlay = cv2.addWeighted(
image1_colored, 1.0, refined_view, 0.5, 0)
displays_imgs += [(image0_colored, 'CC'), (image1_colored, 'MLO')]
displays_imgs.append((heatmap0_overlay, 'CC Interest Area'))
displays_imgs.append((heatmap1_overlay, 'MLO Interest Area'))
return displays_imgs, lebels_dict
def run():
"""Run Gradio App."""
with open('index.html', encoding='utf-8') as f:
html_content = f.read()
with gr.Blocks(theme=gr.themes.Default(primary_hue=page_utils.KALBE_THEME_COLOR, secondary_hue=page_utils.KALBE_THEME_COLOR).set(
button_primary_background_fill='*primary_600',
button_primary_background_fill_hover='*primary_500',
button_primary_text_color='white',
)) as demo:
with gr.Column():
gr.HTML(html_content)
with gr.Row():
with gr.Column():
cc_file = gr.File(file_count='single',
file_types=SUPPORTED_IMG_EXT, label='CC View')
mlo_file = gr.File(file_count='single',
file_types=SUPPORTED_IMG_EXT, label='MLO View')
with gr.Row():
clear_btn = gr.Button('Clear')
process_btn = gr.Button('Process', variant="primary")
with gr.Column():
output_gallery = gr.Gallery(
label='Highlighted Area').style(grid=[2], height='auto')
cancer_type = gr.Label(label='Cancer Type')
gr.Examples(
examples=EXAMPLE_IMAGES,
inputs=[cc_file, mlo_file],
)
gr.Markdown('Note that this method is sensitive to input image types.\
Current pipeline expect the values between 0.0-255.0')
process_btn.click(
fn=predict_bilateral,
inputs=[cc_file, mlo_file],
outputs=[output_gallery, cancer_type]
)
clear_btn.click(
lambda _: (
gr.update(value=None),
gr.update(value=None),
gr.update(value=None),
gr.update(value=None),
),
inputs=None,
outputs=[
cc_file,
mlo_file,
output_gallery,
cancer_type,
],
)
demo.launch(server_name='0.0.0.0', server_port=7860) # nosec B104
if __name__ == '__main__':
run()