|
{ |
|
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_hovernet_20221124.json", |
|
"version": "0.1.3", |
|
"changelog": { |
|
"0.1.3": "add name tag", |
|
"0.1.2": "update the workflow figure", |
|
"0.1.1": "update to use monai 1.1.0", |
|
"0.1.0": "complete the model package" |
|
}, |
|
"monai_version": "1.1.0", |
|
"pytorch_version": "1.13.0", |
|
"numpy_version": "1.22.2", |
|
"optional_packages_version": { |
|
"scikit-image": "0.19.3", |
|
"scipy": "1.8.1", |
|
"tqdm": "4.64.1", |
|
"pillow": "9.0.1" |
|
}, |
|
"name": "Nuclear segmentation and classification", |
|
"task": "Nuclear segmentation and classification", |
|
"description": "A simultaneous segmentation and classification of nuclei within multitissue histology images based on CoNSeP data", |
|
"authors": "MONAI team", |
|
"copyright": "Copyright (c) MONAI Consortium", |
|
"data_source": "https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/", |
|
"data_type": "numpy", |
|
"image_classes": "RGB image with intensity between 0 and 255", |
|
"label_classes": "a dictionary contains binary nuclear segmentation, hover map and pixel-level classification", |
|
"pred_classes": "a dictionary contains scalar probability for binary nuclear segmentation, hover map and pixel-level classification", |
|
"eval_metrics": { |
|
"Binary Dice": 0.8293, |
|
"PQ": 0.4936, |
|
"F1d": 0.748 |
|
}, |
|
"intended_use": "This is an example, not to be used for diagnostic purposes", |
|
"references": [ |
|
"Simon Graham. 'HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images.' Medical Image Analysis, 2019. https://arxiv.org/abs/1812.06499" |
|
], |
|
"network_data_format": { |
|
"inputs": { |
|
"image": { |
|
"type": "image", |
|
"format": "magnitude", |
|
"num_channels": 3, |
|
"spatial_shape": [ |
|
"256", |
|
"256" |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
255 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "image" |
|
} |
|
} |
|
}, |
|
"outputs": { |
|
"nucleus_prediction": { |
|
"type": "probability", |
|
"format": "segmentation", |
|
"num_channels": 3, |
|
"spatial_shape": [ |
|
"164", |
|
"164" |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "background", |
|
"1": "nuclei" |
|
} |
|
}, |
|
"horizontal_vertical": { |
|
"type": "probability", |
|
"format": "regression", |
|
"num_channels": 2, |
|
"spatial_shape": [ |
|
"164", |
|
"164" |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "horizontal distances map", |
|
"1": "vertical distances map" |
|
} |
|
}, |
|
"type_prediction": { |
|
"type": "probability", |
|
"format": "classification", |
|
"num_channels": 2, |
|
"spatial_shape": [ |
|
"164", |
|
"164" |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "background", |
|
"1": "type of nucleus for each pixel" |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|