File size: 16,747 Bytes
54f43fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
{
    "imports": [
        "$import glob",
        "$import os",
        "$import skimage"
    ],
    "bundle_root": "$os.getcwd()",
    "ckpt_dir_stage0": "$os.path.join(@bundle_root, 'models', 'stage0')",
    "ckpt_dir_stage1": "$os.path.join(@bundle_root, 'models')",
    "ckpt_path_stage0": "$os.path.join(@ckpt_dir_stage0, 'model.pt')",
    "output_dir": "$os.path.join(@bundle_root, 'eval')",
    "dataset_dir": "/workspace/Data/Pathology/CoNSeP/Prepared/",
    "train_images": "$list(sorted(glob.glob(@dataset_dir + '/Train/*image.npy')))",
    "val_images": "$list(sorted(glob.glob(@dataset_dir + '/Test/*image.npy')))",
    "train_inst_map": "$list(sorted(glob.glob(@dataset_dir + '/Train/*inst_map.npy')))",
    "val_inst_map": "$list(sorted(glob.glob(@dataset_dir + '/Test/*inst_map.npy')))",
    "train_type_map": "$list(sorted(glob.glob(@dataset_dir + '/Train/*type_map.npy')))",
    "val_type_map": "$list(sorted(glob.glob(@dataset_dir + '/Test/*type_map.npy')))",
    "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
    "stage": 0,
    "epochs": 50,
    "val_interval": 1,
    "learning_rate": 0.0001,
    "amp": true,
    "hovernet_mode": "fast",
    "patch_size": 256,
    "out_size": 164,
    "ckpt_dir": "$@ckpt_dir_stage0 if @stage == 0 else @ckpt_dir_stage1",
    "network_def": {
        "_target_": "HoVerNet",
        "mode": "@hovernet_mode",
        "in_channels": 3,
        "out_classes": 5,
        "adapt_standard_resnet": true,
        "pretrained_url": "$None",
        "freeze_encoder": true
    },
    "network": "$@network_def.to(@device)",
    "loss": {
        "_target_": "HoVerNetLoss",
        "lambda_hv_mse": 1.0
    },
    "optimizer": {
        "_target_": "torch.optim.Adam",
        "params": "$filter(lambda p: p.requires_grad, @network.parameters())",
        "lr": "@learning_rate",
        "weight_decay": 1e-05
    },
    "lr_scheduler": {
        "_target_": "torch.optim.lr_scheduler.StepLR",
        "optimizer": "@optimizer",
        "step_size": 25
    },
    "train": {
        "preprocessing_transforms": [
            {
                "_target_": "LoadImaged",
                "keys": [
                    "image",
                    "label_inst",
                    "label_type"
                ]
            },
            {
                "_target_": "EnsureChannelFirstd",
                "keys": [
                    "image",
                    "label_inst",
                    "label_type"
                ],
                "channel_dim": -1
            },
            {
                "_target_": "Lambdad",
                "keys": "label_inst",
                "func": "$lambda x: skimage.measure.label(x)"
            },
            {
                "_target_": "RandAffined",
                "keys": [
                    "image",
                    "label_inst",
                    "label_type"
                ],
                "prob": 1.0,
                "rotate_range": [
                    "$np.pi"
                ],
                "scale_range": [
                    [
                        -0.2,
                        0.2
                    ],
                    [
                        -0.2,
                        0.2
                    ]
                ],
                "shear_range": [
                    [
                        -0.05,
                        0.05
                    ],
                    [
                        -0.05,
                        0.05
                    ]
                ],
                "translate_range": [
                    [
                        -6,
                        6
                    ],
                    [
                        -6,
                        6
                    ]
                ],
                "padding_mode": "zeros",
                "mode": "nearest"
            },
            {
                "_target_": "CenterSpatialCropd",
                "keys": [
                    "image"
                ],
                "roi_size": [
                    "@patch_size",
                    "@patch_size"
                ]
            },
            {
                "_target_": "RandFlipd",
                "keys": [
                    "image",
                    "label_inst",
                    "label_type"
                ],
                "prob": 0.5,
                "spatial_axis": 0
            },
            {
                "_target_": "RandFlipd",
                "keys": [
                    "image",
                    "label_inst",
                    "label_type"
                ],
                "prob": 0.5,
                "spatial_axis": 1
            },
            {
                "_target_": "OneOf",
                "transforms": [
                    {
                        "_target_": "RandGaussianSmoothd",
                        "keys": [
                            "image"
                        ],
                        "sigma_x": [
                            0.1,
                            1.1
                        ],
                        "sigma_y": [
                            0.1,
                            1.1
                        ],
                        "prob": 1.0
                    },
                    {
                        "_target_": "MedianSmoothd",
                        "keys": [
                            "image"
                        ],
                        "radius": 1
                    },
                    {
                        "_target_": "RandGaussianNoised",
                        "keys": [
                            "image"
                        ],
                        "std": 0.05,
                        "prob": 1.0
                    }
                ]
            },
            {
                "_target_": "CastToTyped",
                "keys": "image",
                "dtype": "$np.uint8"
            },
            {
                "_target_": "TorchVisiond",
                "keys": "image",
                "name": "ColorJitter",
                "brightness": [
                    0.9,
                    1.0
                ],
                "contrast": [
                    0.95,
                    1.1
                ],
                "saturation": [
                    0.8,
                    1.2
                ],
                "hue": [
                    -0.04,
                    0.04
                ]
            },
            {
                "_target_": "AsDiscreted",
                "keys": "label_type",
                "to_onehot": 5
            },
            {
                "_target_": "ScaleIntensityRanged",
                "keys": "image",
                "a_min": 0.0,
                "a_max": 255.0,
                "b_min": 0.0,
                "b_max": 1.0,
                "clip": true
            },
            {
                "_target_": "CastToTyped",
                "keys": "label_inst",
                "dtype": "$torch.int"
            },
            {
                "_target_": "ComputeHoVerMapsd",
                "keys": "label_inst"
            },
            {
                "_target_": "Lambdad",
                "keys": "label_inst",
                "func": "$lambda x: x > 0",
                "overwrite": "label"
            },
            {
                "_target_": "CenterSpatialCropd",
                "keys": [
                    "label",
                    "hover_label_inst",
                    "label_inst",
                    "label_type"
                ],
                "roi_size": [
                    "@out_size",
                    "@out_size"
                ]
            },
            {
                "_target_": "AsDiscreted",
                "keys": "label",
                "to_onehot": 2
            },
            {
                "_target_": "CastToTyped",
                "keys": [
                    "image",
                    "label_inst",
                    "label_type"
                ],
                "dtype": "$torch.float32"
            }
        ],
        "preprocessing": {
            "_target_": "Compose",
            "transforms": "$@train#preprocessing_transforms"
        },
        "dataset": {
            "_target_": "Dataset",
            "data": "$[{'image': i, 'label_inst': j, 'label_type': k} for i, j, k in zip(@train_images, @train_inst_map, @train_type_map)]",
            "transform": "@train#preprocessing"
        },
        "dataloader": {
            "_target_": "DataLoader",
            "dataset": "@train#dataset",
            "batch_size": 16,
            "shuffle": true,
            "num_workers": 4
        },
        "inferer": {
            "_target_": "SimpleInferer"
        },
        "postprocessing_np": {
            "_target_": "Compose",
            "transforms": [
                {
                    "_target_": "Activationsd",
                    "keys": "nucleus_prediction",
                    "softmax": true
                },
                {
                    "_target_": "AsDiscreted",
                    "keys": "nucleus_prediction",
                    "argmax": true
                }
            ]
        },
        "postprocessing": {
            "_target_": "Lambdad",
            "keys": "pred",
            "func": "$@train#postprocessing_np"
        },
        "handlers": [
            {
                "_target_": "LrScheduleHandler",
                "lr_scheduler": "@lr_scheduler",
                "print_lr": true
            },
            {
                "_target_": "ValidationHandler",
                "validator": "@validate#evaluator",
                "epoch_level": true,
                "interval": "@val_interval"
            },
            {
                "_target_": "CheckpointSaver",
                "save_dir": "@ckpt_dir",
                "save_dict": {
                    "model": "@network"
                },
                "save_interval": 10,
                "epoch_level": true,
                "save_final": true,
                "final_filename": "model.pt"
            },
            {
                "_target_": "StatsHandler",
                "tag_name": "train_loss",
                "output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
            },
            {
                "_target_": "TensorBoardStatsHandler",
                "log_dir": "@output_dir",
                "tag_name": "train_loss",
                "output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
            }
        ],
        "extra_handlers": [
            {
                "_target_": "CheckpointLoader",
                "load_path": "$os.path.join(@ckpt_dir_stage0, 'model.pt')",
                "load_dict": {
                    "model": "@network"
                }
            }
        ],
        "train_handlers": "$@train#extra_handlers + @train#handlers if @stage==1 else @train#handlers",
        "key_metric": {
            "train_mean_dice": {
                "_target_": "MeanDice",
                "include_background": false,
                "output_transform": "$monai.apps.pathology.handlers.utils.from_engine_hovernet(keys=['pred', 'label'], nested_key='nucleus_prediction')"
            }
        },
        "trainer": {
            "_target_": "SupervisedTrainer",
            "max_epochs": "@epochs",
            "device": "@device",
            "train_data_loader": "@train#dataloader",
            "prepare_batch": "$monai.apps.pathology.engines.utils.PrepareBatchHoVerNet(extra_keys=['label_type', 'hover_label_inst'])",
            "network": "@network",
            "loss_function": "@loss",
            "optimizer": "@optimizer",
            "inferer": "@train#inferer",
            "postprocessing": "@train#postprocessing",
            "key_train_metric": "@train#key_metric",
            "train_handlers": "@train#train_handlers",
            "amp": "@amp"
        }
    },
    "validate": {
        "preprocessing_transforms": [
            {
                "_target_": "LoadImaged",
                "keys": [
                    "image",
                    "label_inst",
                    "label_type"
                ]
            },
            {
                "_target_": "EnsureChannelFirstd",
                "keys": [
                    "image",
                    "label_inst",
                    "label_type"
                ],
                "channel_dim": -1
            },
            {
                "_target_": "Lambdad",
                "keys": "label_inst",
                "func": "$lambda x: skimage.measure.label(x)"
            },
            {
                "_target_": "CastToTyped",
                "keys": [
                    "image",
                    "label_inst"
                ],
                "dtype": "$torch.int"
            },
            {
                "_target_": "CenterSpatialCropd",
                "keys": [
                    "image"
                ],
                "roi_size": [
                    "@patch_size",
                    "@patch_size"
                ]
            },
            {
                "_target_": "ScaleIntensityRanged",
                "keys": "image",
                "a_min": 0.0,
                "a_max": 255.0,
                "b_min": 0.0,
                "b_max": 1.0,
                "clip": true
            },
            {
                "_target_": "ComputeHoVerMapsd",
                "keys": "label_inst"
            },
            {
                "_target_": "Lambdad",
                "keys": "label_inst",
                "func": "$lambda x: x > 0",
                "overwrite": "label"
            },
            {
                "_target_": "CenterSpatialCropd",
                "keys": [
                    "label",
                    "hover_label_inst",
                    "label_inst",
                    "label_type"
                ],
                "roi_size": [
                    "@out_size",
                    "@out_size"
                ]
            },
            {
                "_target_": "CastToTyped",
                "keys": [
                    "image",
                    "label_inst",
                    "label_type"
                ],
                "dtype": "$torch.float32"
            }
        ],
        "preprocessing": {
            "_target_": "Compose",
            "transforms": "$@validate#preprocessing_transforms"
        },
        "dataset": {
            "_target_": "Dataset",
            "data": "$[{'image': i, 'label_inst': j, 'label_type': k} for i, j, k in zip(@val_images, @val_inst_map, @val_type_map)]",
            "transform": "@validate#preprocessing"
        },
        "dataloader": {
            "_target_": "DataLoader",
            "dataset": "@validate#dataset",
            "batch_size": 16,
            "shuffle": false,
            "num_workers": 4
        },
        "inferer": {
            "_target_": "SimpleInferer"
        },
        "postprocessing": "$@train#postprocessing",
        "handlers": [
            {
                "_target_": "StatsHandler",
                "iteration_log": false
            },
            {
                "_target_": "TensorBoardStatsHandler",
                "log_dir": "@output_dir",
                "iteration_log": false
            },
            {
                "_target_": "CheckpointSaver",
                "save_dir": "@ckpt_dir",
                "save_dict": {
                    "model": "@network"
                },
                "save_key_metric": true
            }
        ],
        "key_metric": {
            "val_mean_dice": {
                "_target_": "MeanDice",
                "include_background": false,
                "output_transform": "$monai.apps.pathology.handlers.utils.from_engine_hovernet(keys=['pred', 'label'], nested_key='nucleus_prediction')"
            }
        },
        "evaluator": {
            "_target_": "SupervisedEvaluator",
            "device": "@device",
            "val_data_loader": "@validate#dataloader",
            "prepare_batch": "$monai.apps.pathology.engines.utils.PrepareBatchHoVerNet(extra_keys=['label_type', 'hover_label_inst'])",
            "network": "@network",
            "inferer": "@validate#inferer",
            "postprocessing": "@validate#postprocessing",
            "key_val_metric": "@validate#key_metric",
            "val_handlers": "@validate#handlers",
            "amp": "@amp"
        }
    },
    "training": [
        "$monai.utils.set_determinism(seed=321)",
        "$setattr(torch.backends.cudnn, 'benchmark', True)",
        "$@train#trainer.run()"
    ]
}