File size: 2,422 Bytes
2cf7aba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1ab033
 
2cf7aba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
<!DOCTYPE html>
<html>
	<head>
		<link rel="stylesheet" href="file/style.css" />
		<link rel="preconnect" href="https://fonts.googleapis.com" />
		<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin />
		<link href="https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600;700&display=swap" rel="stylesheet" />
		<title>Pathology Nuclei Classification</title>
	</head>
	<body>
		<div class="container">
			<h1 class="title">Pathology Nuclei Classification</h1>
			<h2 class="subtitle">Kalbe Digital Lab</h2>
			<section class="overview">
				<div class="grid-container">
					<h3 class="overview-heading"><span class="vl">Overview</span></h3>
					<div>
						<p class="overview-content">Nuclei classification within Haematoxylin & Eosi stained histology images. Classifying nuclei cells as the following types:</p>
						<ul>
							<li>Other</li>
							<li>Inflammatory</li>
							<li>Epithelial</li>
							<li>Spindle-Shaped</li>
						</ul>
						<p class="overview-content">References: <a href="https://doi.org/10.1016/j.media.2019.101563" target="_blank">https://doi.org/10.1016/j.media.2019.101563</a></p>
					</div>
				</div>
				<div class="grid-container">
					<h3 class="overview-heading"><span class="vl">Dataset</span></h3>
					<div>
						<p class="overview-content">
							The model is trained with Colorectal Nuclear Segmentation and Phenotypes (CoNSeP) dataset
							<a href="https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet" target="_blank">https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet</a>. Images were extracted from 16 colorectal adenocarcinoma (CRA) WSIs.
						</p>
						<ul>
							<li>Target: Nuclei</li>
							<li>Task: Classification</li>
							<li>Modality: Images (Histology and Label) </li>
						</ul>
					</div>
				</div>
				<div class="grid-container">
					<h3 class="overview-heading"><span class="vl">Model Architecture</span></h3>
					<div>
						<p class="overview-content">The model is trained using DenseNet121 over CoNSep dataset.</p>
						<img class="content-image" src="file/figures/architecture.png" alt="model-architecture" />
					</div>
				</div>
			</section>
			<h3 class="overview-heading"><span class="vl">Demo</span></h3>
			<p class="overview-content">Please select or upload a nuclei histology image and label image to see Nuclei Cells Classification capabilities of this model</p>
		</div>
	</body>
</html>