Kalbe-x-Bangkit commited on
Commit
f6fd1f6
·
verified ·
1 Parent(s): 1862f3a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -235,9 +235,9 @@ def grad_cam(input_model, img_array, cls, layer_name):
235
  def compute_gradcam(model, img_path, layer_name='bn'):
236
  base_model = keras.applications.DenseNet121(weights = './densenet.hdf5', include_top = False)
237
  x = base_model.output
238
- x = GlobalAveragePooling2D()(x)
239
- predictions = Dense(14, activation = "sigmoid")(x)
240
- model_gradcam = Model(inputs=base_model.input, outputs=predictions)
241
  model_gradcam.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),
242
  loss='sparse_categorical_crossentropy')
243
  model.load_weights('./pretrained_model.h5')
 
235
  def compute_gradcam(model, img_path, layer_name='bn'):
236
  base_model = keras.applications.DenseNet121(weights = './densenet.hdf5', include_top = False)
237
  x = base_model.output
238
+ x = keras.layers.GlobalAveragePooling2D()(x)
239
+ predictions = keras.layers.Dense(14, activation = "sigmoid")(x)
240
+ model_gradcam = keras.Model(inputs=base_model.input, outputs=predictions)
241
  model_gradcam.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),
242
  loss='sparse_categorical_crossentropy')
243
  model.load_weights('./pretrained_model.h5')