Kalbe-x-Bangkit
commited on
Revised detection.
Browse files
app.py
CHANGED
@@ -26,56 +26,88 @@ bucket_result = storage_client.bucket(bucket_name)
|
|
26 |
bucket_name_load = "da-ml-models"
|
27 |
bucket_load = storage_client.bucket(bucket_name_load)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
def
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
image_normalized = (image_resized - 127.5) / 127.5
|
58 |
-
image_normalized = np.expand_dims(image_normalized, axis=0)
|
59 |
|
60 |
-
|
61 |
-
pred_bbox = model.predict(image_normalized, verbose=0)[0]
|
62 |
|
63 |
-
|
64 |
-
pred_x1 = int(pred_bbox[0] * image.shape[1])
|
65 |
-
pred_y1 = int(pred_bbox[1] * image.shape[0])
|
66 |
-
pred_x2 = int(pred_bbox[2] * image.shape[1])
|
67 |
-
pred_y2 = int(pred_bbox[3] * image.shape[0])
|
68 |
|
69 |
-
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
# test_sample_images = [os.path.join(test_samples_folder, f) for f in os.listdir(test_samples_folder) if f.endswith('.jpg') or f.endswith('.png')]
|
76 |
-
# test_sample_selected = st.selectbox("Select a test sample image", test_sample_images)
|
77 |
-
# if test_sample_selected:
|
78 |
-
# st.image(test_sample_selected, caption='Selected Test Sample Image', use_column_width=True)
|
79 |
|
80 |
|
81 |
# Utility Functions
|
@@ -468,4 +500,4 @@ if uploaded_file is not None:
|
|
468 |
model = load_model()
|
469 |
# Compute and show Grad-CAM
|
470 |
st.write("Generating Grad-CAM visualizations")
|
471 |
-
compute_gradcam(model, uploaded_file)
|
|
|
26 |
bucket_name_load = "da-ml-models"
|
27 |
bucket_load = storage_client.bucket(bucket_name_load)
|
28 |
|
29 |
+
H = 224
|
30 |
+
W = 224
|
31 |
|
32 |
+
@st.cache_resource
|
33 |
+
def load_model():
|
34 |
+
model = tf.keras.models.load_model("model-detection.h5", compile=False)
|
35 |
+
model.compile(
|
36 |
+
loss={
|
37 |
+
"bbox": "mse",
|
38 |
+
"class": "sparse_categorical_crossentropy"
|
39 |
+
},
|
40 |
+
optimizer=tf.keras.optimizers.Adam(),
|
41 |
+
metrics={
|
42 |
+
"bbox": ['mse'],
|
43 |
+
"class": ['accuracy']
|
44 |
+
}
|
45 |
+
)
|
46 |
+
return model
|
47 |
|
48 |
+
def preprocess_image(image):
|
49 |
+
""" Preprocess the image to the required size and normalization. """
|
50 |
+
image = cv2.resize(image, (W, H))
|
51 |
+
image = (image - 127.5) / 127.5 # Normalize to [-1, +1]
|
52 |
+
image = np.expand_dims(image, axis=0).astype(np.float32)
|
53 |
+
return image
|
54 |
|
55 |
+
def predict(model, image):
|
56 |
+
""" Predict bounding box and label for the input image. """
|
57 |
+
pred_bbox, pred_class = model.predict(image)
|
58 |
+
pred_label_confidence = np.max(pred_class, axis=1)[0]
|
59 |
+
pred_label = np.argmax(pred_class, axis=1)[0]
|
60 |
+
return pred_bbox[0], pred_label, pred_label_confidence
|
61 |
|
62 |
+
def draw_bbox(image, bbox):
|
63 |
+
""" Draw bounding box on the image. """
|
64 |
+
h, w, _ = image.shape
|
65 |
+
x1, y1, x2, y2 = bbox
|
66 |
+
x1, y1, x2, y2 = int(x1 * w), int(y1 * h), int(x2 * w), int(y2 * h)
|
67 |
+
image = cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
68 |
+
return image
|
69 |
|
70 |
+
st.title("Chest X-ray Disease Detection")
|
|
|
|
|
71 |
|
72 |
+
st.write("Upload a chest X-ray image and click on 'Detect' to find out if there's any disease.")
|
|
|
73 |
|
74 |
+
model = load_model()
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
77 |
|
78 |
+
if uploaded_file is not None:
|
79 |
+
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
80 |
+
image = cv2.imdecode(file_bytes, 1)
|
81 |
+
|
82 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
83 |
+
|
84 |
+
if st.button('Detect'):
|
85 |
+
st.write("Processing...")
|
86 |
+
input_image = preprocess_image(image)
|
87 |
+
pred_bbox, pred_label, pred_label_confidence = predict(model, input_image)
|
88 |
+
|
89 |
+
# Updated label mapping based on the dataset
|
90 |
+
label_mapping = {
|
91 |
+
0: 'Atelectasis',
|
92 |
+
1: 'Cardiomegaly',
|
93 |
+
2: 'Effusion',
|
94 |
+
3: 'Infiltrate',
|
95 |
+
4: 'Mass',
|
96 |
+
5: 'Nodule',
|
97 |
+
6: 'Pneumonia',
|
98 |
+
7: 'Pneumothorax'
|
99 |
+
}
|
100 |
+
|
101 |
+
if pred_label_confidence < 0.2:
|
102 |
+
st.write("May not detect a disease.")
|
103 |
+
else:
|
104 |
+
pred_label_name = label_mapping[pred_label]
|
105 |
+
st.write(f"Prediction Label: {pred_label_name}")
|
106 |
+
st.write(f"Prediction Bounding Box: {pred_bbox}")
|
107 |
+
st.write(f"Prediction Confidence: {pred_label_confidence:.2f}")
|
108 |
|
109 |
+
output_image = draw_bbox(image.copy(), pred_bbox)
|
110 |
+
st.image(output_image, caption='Detected Image.', use_column_width=True)
|
|
|
|
|
|
|
|
|
111 |
|
112 |
|
113 |
# Utility Functions
|
|
|
500 |
model = load_model()
|
501 |
# Compute and show Grad-CAM
|
502 |
st.write("Generating Grad-CAM visualizations")
|
503 |
+
compute_gradcam(model, uploaded_file)
|