Kalbe-x-Bangkit commited on
Commit
a82182d
1 Parent(s): 5e28aaf

Remove big center image from detection.

Browse files
Files changed (1) hide show
  1. app.py +5 -33
app.py CHANGED
@@ -82,39 +82,11 @@ model = load_model()
82
 
83
  # uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
84
 
85
- if uploaded_file is not None:
86
- file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
87
- image = cv2.imdecode(file_bytes, 1)
88
-
89
- st.image(image, caption='Uploaded Image.', use_column_width=True)
90
-
91
- # if st.button('Detect'):
92
- # st.write("Processing...")
93
- # input_image = preprocess_image(image)
94
- # pred_bbox, pred_label, pred_label_confidence = predict(model, input_image)
95
-
96
- # # Updated label mapping based on the dataset
97
- # label_mapping = {
98
- # 0: 'Atelectasis',
99
- # 1: 'Cardiomegaly',
100
- # 2: 'Effusion',
101
- # 3: 'Infiltrate',
102
- # 4: 'Mass',
103
- # 5: 'Nodule',
104
- # 6: 'Pneumonia',
105
- # 7: 'Pneumothorax'
106
- # }
107
-
108
- # if pred_label_confidence < 0.2:
109
- # st.write("May not detect a disease.")
110
- # else:
111
- # pred_label_name = label_mapping[pred_label]
112
- # st.write(f"Prediction Label: {pred_label_name}")
113
- # st.write(f"Prediction Bounding Box: {pred_bbox}")
114
- # st.write(f"Prediction Confidence: {pred_label_confidence:.2f}")
115
-
116
- # output_image = draw_bbox(image.copy(), pred_bbox)
117
- # st.image(output_image, caption='Detected Image.', use_column_width=True)
118
 
119
 
120
  # Utility Functions
 
82
 
83
  # uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
84
 
85
+ # if uploaded_file is not None:
86
+ # file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
87
+ # image = cv2.imdecode(file_bytes, 1)
88
+
89
+ # st.image(image, caption='Uploaded Image.', use_column_width=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
 
92
  # Utility Functions